	1094 766	MODI	ERN OPT 80 A	IMAL CO M JANIS	NTROL A	RIGHT- ETHODS	PATTERS APPLIE	ON AFB D IN AC	OH SCH	HOOET ONTROL	C F/G OF A T-	12/2 -ETC(U)	,
UNCL	.ASSIFIE	D AFI	T/GS/AA	/80D-2							NL		
	1 or 2 1884248	<u>.</u>											

APPROVED FOR PUBLIC RELEASE AFR 190-17.

Laurel A. Lample

LAUREL A. LAMPELA, 2Lt, USAF Deputy Director, Public Affairs

Air Force Institute of Technology (ATC) Wright-Patterson AFB, OH 45433

9 master's thesis,

Accession For NTIS GRA&I DTIC TAB Unannounced Justification_ Distribution/ Availability Codes Avail and/or 1 Special

MODERN OPTIMAL CONTROL METHODS APPLIED IN ACTIVE CONTROL OF A TETRAHEDRON .

THESIS

AFIT/GA/AA/80D captain

Alan La Janiszewski

michael

Dec Sip

Approved for public release; distribution unlimited

012225 £W

MODERN OPTIMAL CONTROL METHODS APPLIED IN ACTIVE CONTROL OF A TETRAHEDRON

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirement for the Degree of
Master of Science

by Alan M. Janiszewski

Captain

USAF

Graduate Astronautical Engineering

December 1980

Approved for public release; distribution unlimited

Preface

I would like to express gratitude to my thesis advisor, Dr. R. A. Calico, for providing an underlying sense of direction to this study, while willingly spending his time guiding me through the concepts contained herein. Additionally, the support of Capt. J. Rader and Capt. W. Wiesel through their sequences in optimization techniques and estimation theory clearly enhanced my understanding of concepts germain to this analysis. Also, Capt. J. Silverthorn provided valuable insight into more clearly presenting many of the ideas which follow. I'd like to thank my wife and typist, Grace. Her understanding and support in the former role meant far more than her assistance in the latter. Finally, I am indebted to my son, Andy, who only knew I wasn't there without being able to understand why.

Alan M. Janiszewski

Contents

	Preface	• • • • • • • • • • • • • • • • • • • •	•	•	•	•	•	ii
	List of	Figures	•	•	•	•	•	iv
	List of	Tables	•	•	•	•	•	ν
	Abstract		•	•	•	•	•	vi
)	ı.	Introduction	•	•	•	•	•	1
	II.	System Model	•	•	•		•	5
		General Configuration	•	•	•	•	•	5
		Equations of Motion	•	•	•		•	10
		Modal Control	•	•	•		•	17
		Block Diagram Representation						
		for the Linear Model	•	•	•	•	•	22
	III.	Transformation Matrix Control Method	•	•	•	•	•	25
	IV.	The Computer Model	•	•			•	31
	v.	Investigation	•	•	•		•	35
		Outline	•	•	•		•	35
		Elimination of Control Spillover	•	•	•	•	•	36
		Elimination of Observation Spillover	•	•		•	•	49
		Sensor Additions	•	•	•	•	•	56
	VI.	Conclusions		•	•		•	63
	VII.	Recommendations	•	•	•	•	•	65
	Bibliogra	aphy	•	•	•	•	•	66
	Appendix	A	•	•	•	•	•	67
-	Appendix	B	•	•			•	7 0
	Vita			•			•	98

		<u>17</u>	st	<u>oi</u>	Figure	<u>s</u>												Pā	ige
1.	Cross Section	al View	of	th	e Syste	em	Mo	de	1	•		•		•	•	•	•	•	6
2.	View of System	m Model	Dow	n '	Y and 2	ZA	xe	s							•		•	•	7
3.	Simple Open L	oop Plar	ıt.			•								•			•		17
4.	System in Blo	ck Diagr	am	Fo	rm	•	•		•	•	•			•	•	•	•	•	23
5.	System in Mod	ified Bl	lock	D	iagram	Fo	rn	ì	•						•		•	•	23
6.	LOSX VS. Time	, B _s G ≠	Ο,	F	= 1.0	•	•	•	•		•		•			•	•		40
7.	LOSY VS. Time	, B _s G #	0,	F	= 1.0	•		•			•	•	•		•	•	•	•	41
8.	LOSX VS. Time	, B _s G =	0,	F	= 1.0	•	•	•	•	•	•	•			•	•	•		42
9.	LOSY VS. Time	, B _s G =	0,	F	= 1.0	•			•		•	•	•		•	•	•		43
10.	LOSX VS. Time	, B _s G ≠	0,	F	= 1000.	. 0			•	•	•	•	•	•	•	•	•	•	45
11.	LOSY VS. Time	, B _s G ≠	0,	F	= 1000	. 0	•	•	•		•	•	•		•	•	•	•	46
12.	LOSX VS. Time	, B _s G =	0,	F	= 1000	. 0		•	•	•		•	•	•	•	•	•	•	47
13.	LOSY VS. Time	, B _s G =	0,	F	= 1000.	. 0	•	•	•	•		•	•	•	•	•	•	•	48
14.	LOSX VS. Time	, KC _s ≠	0,	Q	= 1000.	. 0	•	•	•	•	•	•	•	•	•	•	•	•	52
15.	LOSY VS. Time	, KC _s ≠	0,	Q	= 1000	. 0	•	•	•		•	•	•	•	•	•	•	•	53
16.	LOSX VS. Time	, KC _s ≠	0,	Q	= 1000	. 0	•		•			•	•	•	•	•		•	54
17.	LOSY VS. Time	, KC _s ≠	0,	Q	= 1000	. 0	•	•	•	•	•	•		•	•	•	•	•	55
18.	LOSX VS. Time	, KC _s ≠	0,	8	Sensors	s ,	Q	=	10	00	. 0		•	•	•	•	•	•	59
19.	LOSY VS. Time	, KC _s ≠	0,	8	Sensors	з,	Q	=	10	00	. 0		•	•	•	•	•	•	60
20.	LOSX VS. Time	, KC _s =	0,	8	Sensor	s,	Q	=	10	00	.0			•	•	•	•	•	61
21.	LOSY VS. Time	, KC =	Ο,	8	Sensors	Б,	Q	=	10	00	. 0	ł				•			62

List of Tables

I.	Node Coordinates	8
II.	Key Results of NASTRAN Eigenvalue Analysis	9
III.	Initial Conditions for Time History Response	9
IV.	Elimination of Control Spillover; F = 1.0	39
v.	Elimination of Control Spillover; F = 1000.0	44
VI.	Elimination of Observation Spillover; $Q = 1000.0$	50
VII.	Singular Values of C_s ; Six Non-reoriented Sensors	49
ZIII.	Reduction of Observation Spillover; Q = 1000.0 (Fixed Sensors)	51
IX.	Elimination of Observation Spillover; Q = 1000.0 (8 Sensors)	58

Abstract

Modern optimal control methods are applied to a lumped mass model of a tetrahedron. The four unit masses of this model are interconnected by isotropic massless rods which are capable of axial deformation only (no bending). NASTRAN is employed in generating a normal modes approximation, while providing the mode shapes and frequencies for the resultant twelve modes. System control is achieved via collocated sensor/actuator pairs at three of the four masses. Pointing accuracy at the fourth mass is used as a figure of merit in determining the effectiveness of the controller. A prescribed line of sight response is established as a goal for successful control.

The controller is developed using linear optimal techniques which produce feedback gains proportional to the state. The state is represented as modal amplitudes and velocities as determined by the sensors. The four higher frequency modes are truncated to signify a simplifying order reduction step. State estimation is incorporated due to the non-availability of modal amplitudes and velocities. The feedback gains are established via steady state optimal regulator theory. Control is applied with point force actuators. System response is examined in light of the effects of observation spillover and control spillover onto a specified number of suppressed modes. A comparison is obtained by complete elimination of the spillover effect. Using singular value decomposition, the spillover is first eliminated through judicious reorientation of one sensor/actuator pair. An attempt to control two modes and suppress six demonstrates the

advantages of spillover elimination, but fails to satisfy the specified response criteria.

Sensors are added to the model at the fourth mass and observation spillover is again eliminated. Line of sight response was improved over the case without sensor additions, but was still inadequate. The truncated modes were added to the system with little degradation, verifying the acceptability of this truncation.

MODERN OPTIMAL CONTROL METHODS APPLIED IN ACTIVE CONTROL OF A TETRAHEDRON

Introduction

The potential for larger and more complex space structures has grown concurrent with the approach of an active, operable space transportation program. Present system concepts involve the deployment of earth resource satellites and micro-wave power relay systems with dimensions extending to hundreds and eventually thousands of meters in diameter. A key design criteria for these immense, mechanically flexible systems is the requirement to develop advanced methods for control. More precisely, a principle issue in the control of a system with an infinite number of vibrational modes is the generation of a method for stabilizing these huge structures with dimensionally realistic controllers. This requirement is basically a function of on-board computer, sensor, and force actuator limitations, along with incumbent modelling inaccuracies. Of the numerous methods now being examined as potential solutions to this control problem, modern state space control theory has received general acceptance as the most viable technique. Applying classical control methods to these large structures is seen as computationally improbable; at the same time, modern state space theory, incorporating a finite element system representation, can be successfully applied to a very wide

class of flexible structures. This theory is most commonly applied using an optimal time-invariant linear regulator as a means of actively controlling vibration.

Due to the inherent hardware limitations briefly highlighted, active control must be restricted to a relatively small number of critical modes. Therefore, in a necessary truncation step, some higher frequency modes remain unmodelled. Natural damping in the system is assumed to preclude the possiblity of instability resulting from these modes. Of the remaining modes (still a potentially large number) it is further desirable to treat only a critical few (not necessarily those with the lowest frequency), while suppressing the rest.

However, the sensor outputs are contaminated by the remaining "suppressed" modes, and the eventual feedback control also excites these modes. Balas (Ref 1) labels these effects "observation spillover" and "control spillover" respectively. He shows that either or both of these effects can lead to overall instabilities; the suppressed modes must, as a result, be a design consideration. Balas describes a technique with which to develop a feedback controller using state variable methods. The key to this approach is the use of narrow bandpass filters which effectively comb out the suppressed mode frequencies to eliminate observation spillover.

Another method for developing an appropriate feedback controller was first presented by Sesak (Ref 2), and later expanded by Coradetti (Ref 3). This approach involves the use of a socalled "singular perturbation" technique in analyzing and eliminating the spillover-generated instabilities. Coradetti concludes

that employing this "singular perturbation" method in a limiting sense, with an infinite penalty applied against any spillover, is equivalent to finding a transformation matrix. This transformation matrix, when applied to feedback gains, effectively eliminates any spillover terms. It should be noted that, even if spillover does not render the system unstable, applying the transformation method may still improve performance. Additionally, while no method for actually automating optimal sensor and actuator placement is defined, some valuable insight into the nature of this task is precipitated. This is accomplished utilizing what have now become well known state space control techniques in conjunction with singular value decomposition of the rectangular matrices of modal amplitudes (Ref 4).

The principle function of this thesis is to provide application of the Coradetti approach to a three dimensional, lumped mass model of a tetrahedron. A line of sight at one of the masses (simulating pointing accuracy) will be used as a figure of merit with which to judge the general effectiveness of this method. This thesis will serve as a direct extension of the work done by Sanborn (Ref 5), in which the stability of a cantilever beam in bending vibration was studied. Specifically, this thesis will examine model response as affected by the number and orientation of position sensors and force actuators. The elimination of control spillover and observation spillover will be obtained using singular perturbation and singular value decomposition techniques.

A representation of a tetrahedron has been obtained via the normal modes approximation package found in the NASTRAN finite

element computer program. The natural frequencies and eigenvalues/eigenvectors associated with each mode were provided by a study done by the Charles Stark Draper Laboratory. For application of the control method, position sensors are used to evaluate modal amplitudes, while point force actuators accomplish the state variable feedback control. Singular value decomposition of the matrices of modal amplitudes at sensor locations and actuator locations is used to produce a transformation matrix by which spillover terms are eliminated. A model with higher order modes truncated (un-modelled) is used to design the controller. The effectiveness of this controller against all modes is examined. Finally, a study of improved performance with added sensors is generated.

System Model

General Configuration

Of the many design criteria which must be considered for the large flexible spacecraft currently being advanced, pointing accuracy looms as the most critical. As a function of system size and operating frequency, pointing accuracies in the range of one tenth the half-power signal beam width will be required. The ability to meet these stringent requirements becomes a direct function of the isotropic stiffness of the system. One of the space erectable or assembly concepts that has the promise of supplying this needed stiffness in larger systems is the geodetic truss (Ref 6). Based on current Space Shuttle cargo capacities, whole units of up to 91.4 meters can be packaged for deployment. For very large systems, these units are assembled as an amalgamation of tetrahedrons -- the basic unit of geodetic truss. By changing the size of the tetrahedrons, a large array of varying stiffness antenna substructures can be developed. For this reason, a tetrahedron is seen as an important model against which to apply proposed control techniques.

The finite element, lumped mass model to be used herein is depicted in Fig 1 and Fig 2. This model is seen to consist of ten nodes. The twelve interconnecting truss members are assumed to be massless and are capable of resisting or exerting axial force only (no-bending). Masses are of one unit each, and are located at grid points one through four. Each mass is capable of perturbation with three degrees of freedom.

Figure 1. Cross Sectional View of the System Model

Figure 2. View of System Model Down Y and X axes

The remaining grid points (five through ten) serve to establish a fixed line of sight for an initial set of six collocated sensor/actuator pairs. Node coordinates for the model are listed as Table I. For this analysis, position sensors are employed, but velocity sensors are not. The effects of this are detailed in the linear system model to be developed in this section.

An eigenvalue analysis of this nominal model has been provided via the NASTRAN computer program. Key results of this analysis are presented as Table II. The eigenvectors associated with these eigenvalues can be found in Appendix A. Table III provides the initial conditions required for a time history examination of system stability. This stability will be assessed using, as a figure of merit, the pointing accuracy along the Z axis at node 1. Since any perturbation directly along the Z axis has no impact on pointing accuracy, the line of sight in the X and Y directions only will be examined.

Table I.

Node Coordinates

Node	<u>x</u>	<u>¥</u>	<u>z</u>
1	0.0	0.0	10.165
2	-5.0	-2.887	2.0
3	5.0	-2.887	2.0
4	0.0	5.7735	2.0
5	-6.0	-1.1547	0.0
6	-4.0	-4.6188	0.0
7	4.0	-4.6188	0.0
8	6.0	-1.1547	0.0
9	2.0	5.7735	0.0
10	-2.0	5.7735	0.0

Table II

Key Results of NASTRAN Eigenvalue Analysis

<u>Mode</u>	Generalized Mass	Generalized Stiffness	ω _n (rad)/sec	$\Omega(\text{rad}^2)/\text{sec}^2$
1	1.0E+00	1.37E+00	1.17E+00	1.37E+00
2	1.0E+00	2.15E+00	1.47E+00	2.15E+00
3	1.0E+00	8.79E+00	2.96E+00	8.79E+00
4	1.0E+00	1.26E+01	3.56E+00	1.26E+01
5	1.0E+00	1.48E+01	3.85E+00	1.48E+01
6	1.0E+00	2.65E+01	5.15E+00	2.65E+01
7	1.0E+00	3.22E+01	5.67E+00	3.22E+01
8	1.0E+00	3.26E+01	5.71E+00	3.26E+01
9	1.0E+00	7.99E+01	8.93E+00	7.99E+01
10	1.0E+00	1.06E+02	1.03E+01	1.06E+02
11	1.0E+00	1.19E+02	1.09E+01	1.19E+02
12	1.0E+00	1.95E+02	1.40E+01	1.95E+02

Displacement (n)	Velocity (n)
001	003
.006	.01
.001	.03
009	02
.008	.02
001	02
002	003
.002	.004
.0	.0
.0	.0
.0	.0
.0	.0
	001 .006 .001009 .008001002 .002 .0

Equations Of Motion

Since there are no exact equations of motion for a continous model of a tetrahedron, we are restricted to the discretized representation provided by the finite element routines.

The output function or motion of the model can be expressed as:

$$Y(x_{j},t) = \sum_{i=1}^{n} \phi_{i}(x_{j})U_{i}(t)$$
 (1)

where the $\phi_i(x_j)$ terms are the mode shapes, and the $U_i(t)$ terms are the mode amplitudes, with n being the number of modes exhibited by the model. For an exact solution to a continuous system, the number of lumped masses and the number of modes (n) would have to reach infinity. Practically speaking, the total system displacement $Y(x_j,t)$, can be reasonably represented by a truncation of Eq (1) such that n is considerably less than infinity. This truncation will, of course, lead to model reduction errors; but, up to a certain point these errors are relatively insignificant.

NASTRAN analyzes the model in Fig 1. and generates both the normal mode shapes and the corresponding natural frequencies (ω_n) . Since this is a lumped mass model consisting of four masses, with each mass having three degrees of freedom, there are a total of twelve normal modes.

Linear System Model

As stated, the number of modes (n) for a complex model may be very large. The practical limitations for an on-board computer and the associated sensor and actuator hardware make it necessary to develop a controller that is concerned with a minimum number of modes, while still satisfying what may be very stringent requirements on the performance (here, line of sight accuracy). As the control theory outlined in this paper is elaborated, a possible method for determining which modes require control will be discussed. At this point, assuming this determination is possible, the system output of Eq (1) can be segregated into 3 partitions; the controlled, the suppressed, and the unmodelled:

$$Y(x_{j},t) = Y_{c}(x_{j},t) + Y_{s}(x_{j},t) + Y_{um}(x_{j},t)$$
 (2)

Y_{um}(X_j,t) is that portion of the output generated through the highest frequency modes. These modes are unmodelled, with the hope that the bandwidths of the sensors and actuators employed will be less that the natural frequencies of the modes. Furthermore, since these modes have such high frequencies, they may be quite difficult to excite. Hence, any controller designed for this system can ignore these modes. These modes are subsequently called the residual modes.

 $Y_s(x_j,t)$ is that portion of the output generated by modes of less high frequency, which, none-the-less have a minimal direct impact on system performance. Due to their indirect and potentially destabilizing impact (spillover), they must be included in the design process. These modes are subsequently called the suppressed modes.

 $Y_c(x_j,t)$ is that portion of the output which we must directly control to insure satisfactory performance. These critical modes

will subsequently be called the controlled modes.

Equation (2) can now be written in segregated form as:

$$Y_{C}(x_{j},t) = \sum_{i=1}^{C} \phi_{i}(x_{j}) \widetilde{U}_{i}(t)$$
 (3)

$$Y_{s}(x_{j},t) = \sum_{i=c+1}^{c+s} \phi_{i}(x_{j}) \overline{U}_{i}(t)$$
 (4)

$$Y_{um}(x_{j},t) = \sum_{i=C+s+1}^{n} \phi_{i}(x_{j}) \overline{U}_{i}(t)$$
 (5)

where c is the number of controlled modes, s is the number of suppressed modes, and n is the total number of modes in the model. Again, for this system model, n is twelve. For the purpose of future analysis, the case of truncating the highest frequency modes will be simulated by suggesting that the last four (highest natural frequency) modes generated by NASTRAN fall into this category. The design process for the overall controller will be based on knowledge of only the first eight modes. eventual controller will be applied to a system incorporating all twelve modes in an attempt to verify the acceptability of this truncation. The modelling can thus be seen as a process of two truncations in the effort to reduce control hardware and software requirements. First, the model is truncated to a workable number of modes by designing a controller that is blind to the higher frequency modes. Second, the model is limited to controlling only the critical modes where the figure of merit is concerned.

NASTRAN has taken the prescribed system with the masses and gridpoints provided, and modelled the structure with a set

of second order differential equations. These are the basic spring mass differential equations such that $\ddot{\eta} + \omega_n^2 \eta = f$. The associated first order eigenproblem is solved (Ref 7) so as to provide the decoupled normal modes. This allows assembling a state space representation of the system:

$$\frac{\dot{x}}{X}(t) = A\overline{X}(t) + B\overline{u}(t)$$
 (6)

where

 \overline{X} (n x 1) is the state vector \overline{u} (m x 1) is the control input vector A(n x n) is the plant matrix B(n x m) is the input matrix

By letting the state X be the partitioned matrix of mode amplitudes $(\overline{\overline{U}}_i(t))$ and their rates of change $(\overline{\overline{U}}_i(t))$ the state variables become:

$$\overline{X}(t) = \begin{bmatrix} \overline{U}_{i}(t) & \vdots & \overline{U}_{i}^{T}(t) \end{bmatrix}^{T}$$
 $i = 1, 2, ..., n$ (7)

Further separating the states into \overline{X}_C , formed by the controlled amplitudes and rates; and \overline{X}_S , formed by the suppressed amplitudes and rates renders:

$$\vec{X}_{c}(t) = \left[\vec{U}_{i}(t) : \dot{\vec{U}}_{i}(t)\right]^{T} \quad i = 1, 2, ..., c$$
 (8)

$$\overline{X}_{s}(t) = \int \overline{U}_{j}(t) \vdots \dot{\overline{U}}_{j}(t) \int^{T} j = c+1,..c+s$$
 (9)

Substituting these states into Eq (6), the system is now modelled by:

$$\dot{\overline{x}}_{C}(t) = A_{C}\overline{x}_{C}(t) + B_{C}\overline{u}(t)$$
 (10)

$$\dot{\overline{X}}_{s}(t) = A_{s}\overline{X}_{s}(t) + B_{s}\overline{u}(t)$$
 (11)

The system parameter matrices are defined as:

$$\mathbf{A}_{\mathbf{C}} = \begin{bmatrix} 0 & \mathbf{I} \\ \vdots & \vdots \\ -\overline{\Omega}_{\mathbf{C}} & -2\xi_{\mathbf{i}}\overline{\omega}_{\mathbf{i}} \end{bmatrix}$$
 (12)

$$\mathbf{A_{S}} = \begin{bmatrix} 0 & \mathbf{I} \\ \vdots \\ -\overline{\Omega} \\ \mathbf{S} & \vdots & -2\xi_{\mathbf{j}} \overline{\omega}_{\mathbf{j}} \end{bmatrix}$$

$$(13)$$

$$B_{\mathbf{C}} = \begin{bmatrix} 0 \\ \dots \\ B_{\mathbf{C}} \end{bmatrix} \tag{14}$$

$$B_{\mathbf{S}} = \begin{bmatrix} 0 \\ \dots \\ B_{\mathbf{S}} \end{bmatrix} \tag{15}$$

The $\overline{\omega}_i$ and $\overline{\omega}_j$ terms are the diagonal elements of square matrices which represent the natural frequencies of the controlled and suppressed modes respectively, while the ξ_i and ξ_j terms represent the damping ratios for those modes i=1,2,... and j=c+1,c+2,...c+s. The $\overline{\Omega}_c$ and $\overline{\Omega}_s$ terms are diagonal matrices of these same natural frequencies squared as determined by NASTRAN. Therefore, as an example, if two modes for a given system were to be controlled, one would have:

$$\mathbf{A_{C}} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\omega_{1}^{2} & 0 & -2\xi_{1}\omega_{1} & 0 \\ 0 & -\omega_{2}^{2} & 0 & -2\xi_{2}\omega_{2} \end{bmatrix}$$

$$(16)$$

Furthermore, the $_{\text{C}}^{\text{B}}$ and $_{\text{S}}^{\text{B}}$ matrices are the control input matrices, and are those matrices whose columns are the mode shapes $(\phi_{\mathbf{i}}(\mathbf{x}), \phi_{\mathbf{j}}(\mathbf{x}))$ evaluated at each actuator location such that:

$$B_{c} = \begin{bmatrix} \phi_{1}(x_{1}) & \phi_{1}(x_{2}) & \dots & \phi_{1}(x_{a}) \\ \phi_{2}(x_{1}) & \phi_{2}(x_{2}) & \dots & \phi_{2}(x_{a}) \\ \vdots & & & \vdots \\ \phi_{c}(x_{1}) & \phi_{c}(x_{2}) & \dots & \phi_{c}(x_{a}) \end{bmatrix}$$
(17)

$$B_{c} = \begin{bmatrix} \phi_{c+1}(x_{1}) & \phi_{c+1}(x_{2}) & \dots & \phi_{c+1}(x_{a}) \\ \phi_{c+2}(x_{1}) & \phi_{c+2}(x_{2}) & \phi_{c+2}(x_{a}) \\ \vdots & & \vdots \\ \phi_{c+s}(x_{1}) & \phi_{c+s}(x_{2}) & \dots & \phi_{c+s}(x_{a}) \end{bmatrix}$$
(18)

where a is the total number of actuators employed.

Additionally, state space methods render the sensor output as:

$$\overline{Y}(t) = C_{\alpha}\overline{X}_{\alpha}(t) + C_{\alpha}\overline{X}_{\alpha}(t)$$
 (19)

with

$$c_{c} = \begin{bmatrix} c_{c} & \vdots & 0 \end{bmatrix}$$
 (20)

$$C_{\mathbf{g}} = \begin{bmatrix} \vdots & \vdots & 0 \\ C_{\mathbf{S}} & \vdots & 0 \end{bmatrix}$$
 (21)

where $C_{\rm c}$ and $C_{\rm s}$ are matrices whose "rows" are the mode shapes of the controlled and the suppressed modes respectively evaluated at the prescribed sensor locations such that:

$$C_{c} = \begin{bmatrix} \phi_{1}(x_{1}) & \phi_{2}(x_{1}) & \dots & \phi_{c}(x_{1}) \\ \phi_{1}(x_{2}) & \phi_{2}(x_{2}) & \dots & \phi_{c}(x_{2}) \\ \vdots & & & \vdots \\ \phi_{1}(x_{b}) & \phi_{2}(x_{b}) & \dots & \phi_{c}(x_{b}) \end{bmatrix}$$
(22)

$$C_{s} = \begin{bmatrix} \phi_{c+1}(x_{1}) & \phi_{c+2}(x_{1}) & \cdots & \phi_{c+s}(x_{1}) \\ \phi_{c+1}(x_{2}) & \phi_{c+2}(x_{2}) & \cdots & \phi_{c+s}(x_{2}) \\ \vdots & & & \vdots \\ \phi_{c+1}(x_{b}) & \phi_{c+2}(x_{b}) & \cdots & \phi_{c+s}(x_{b}) \end{bmatrix}$$
(23)

The null portion of the $C_{\rm C}$ and $C_{\rm S}$ matrices represent the velocities at the prescribed sensor locations, which are zero since only displacement sensors are being employed. Again, b is the total number of sensors used. It should be clear that if collocated sensors and actuators are used, with a = b, then

$$B_{\sim C}^{T} = C_{\sim C}$$
 (24)

$$B_{s}^{T} = C_{s}$$
 (25)

As these model elements are created, it becomes clear that this methodology is independent of structural complexity, except for the overall matrix dimensions. Therefore, the applicability of the subsequent analysis can be seen to be far reaching. As a starting point toward developing a state variable feedback controller, Fig 3 below represents the uncontrolled system that has been here-to-fore described.

Figure 3. Simple Open Loop Plant

In order to eventually form an active control, u(t), using state variable (modern control) feedback techniques, complete knowledge of the actual state at time t must be known. However, the only measure of the state \overline{X} is the measurement vector \overline{Y} provided by the sensors. To take those observations and create the corresponding state, it will be necessary to develop a state estimator which will accept those sensor observations and estimate \overline{X} as \hat{X} .

Modal Control

As Balas explains, the state estimator used in developing active feedback control can either be a Kalman Filter when it is found that the signal-to-noise ratios are relatively small, or a Luenberger observer, or a least squares technique, should the signal to noise ratio be high enough to treat the system

as deterministic. Regardless of which is used, the estimator will have the form:

$$\hat{\hat{\mathbf{x}}}_{\mathbf{N}}(\mathsf{t}) = \mathbf{A}_{\mathbf{N}} \overline{\mathbf{X}}_{\mathbf{N}} + \mathbf{B}_{\mathbf{N}} \overline{\mathbf{u}}(\mathsf{t}) + \mathbf{K}_{\mathbf{N}} [\overline{\mathbf{Y}}(\mathsf{t}) - \hat{\mathbf{Y}}(\mathsf{t})]$$
 (26)

and

$$\hat{\mathbf{x}}_{\mathbf{N}}(0) = 0 \tag{27}$$

$$\hat{Y}(t) = C_N \hat{X}_N$$
 (28)

where N is replaced in our system by either c or s.

Observation of Eq (26) shows that the estimator equation is comprised of the internal model of the state as in Eqs (10) and (11), plus a correction term which is made up of the error between the measured output $(\overline{Y}(t))$ and the computed output $(\hat{Y}(t))$. Equation (27) establishes an initial condition for the state out of convenience. The error in this state estimation process is given as:

$$\overline{e}_{N}(t) = \overline{x}_{N}(t) - \hat{x}_{N}(t)$$
 (29)

The equations for this estimator error, formed by combining Eqs (26), (27), and (28) with Eqs (10), (11), and (19) becomes:

$$\dot{\overline{e}}_{N}(t) = (A_{N} - K_{N}C_{N})\overline{e}_{N}(t) + K_{N}C_{R}\overline{X}_{R}(t)$$
 (30)

For the prescribed system, this becomes:

$$\frac{\dot{\mathbf{e}}}{\mathbf{e}_{C}}(\mathsf{t}) = (\mathbf{A}_{C} - \mathbf{K}_{C}\mathbf{C}_{C})\widetilde{\mathbf{e}}_{C}(\mathsf{t}) + \mathbf{K}_{C}\mathbf{C}_{S}\overline{\mathbf{x}}_{S}(\mathsf{t})$$
(31)

Ignoring the suppressed modes, this finally becomes:

$$\dot{\overline{e}}_{C}(t) = (A_{C} - K_{C}C_{C})\overline{e}_{C}(t)$$
 (32)

The observer gain matrix, K, must be formulated so as to insure that the estimator error defined in Eq (32) decays exponentially at a rate more rapid than the system dynamics. The decay rate is determined by the eigenvalues of (A_C-KC_C) . Since the eigenvalues of a matrix are equal to the eigenvalues of the transpose of that matrix, Eq (32) can be rewritten as follows:

$$\frac{\dot{\mathbf{w}}(\mathsf{t})}{\mathbf{w}}(\mathsf{t}) = \mathbf{A}_{\mathbf{C}}^{\mathbf{T}} \mathbf{\overline{w}}(\mathsf{t}) - \mathbf{C}_{\mathbf{C}}^{\mathbf{T}} \mathbf{\overline{g}}(\mathsf{t})$$
 (33)

$$\overline{g}(t) = K^{T}\overline{w}(t)$$
 (34)

The observer gain matrix, K, can now be calculated via steady state optimal regulator theory. This is equivalent to minimizing the quadratic regulator performance index J, where:

$$J = \frac{1}{2} \int_{0}^{\infty} (\overline{wQ}_{ob} \overline{w} + \overline{g}^{T} R_{ob} \overline{g}) dt$$
 (35)

The known optimal solution to this minimization problem is:

$$K^{T} = -R_{ob}^{-1}C_{c}^{\overline{p}}$$
 (36)

where P is the solution to the steady state algebraic matrix Ricatti Equation:

$$PA_{c} + A_{c}P - PC_{c}^{T}R_{ob}^{-1}C_{c}P + Q_{ob} = 0$$
 (37)

where

Q_{ob} is an n x n positive semidefinite state weighting matrix

R_{ob} is an m x m positive definite control
 weighting matrix

By treating only the controlled modes in the generation

of the optimal state feedback gain matrix, we have significantly reduced the order of the controller. This was accomplished, as previously stated to avoid practical problems encountered in deriving a global controller. The reduced order controller will subsequently be designed to control a subset of all of the system states, while simultaneously avoiding any excitation of the remaining states. Coradetti clarifies the advantages of this process when he points out that the computational burden of solving the Ricatti Equation increases roughly as the cube of the order of the equation. There may simply not be sufficient on-board computer memory available. Also, the state estimator process increases with system order a at a greater than linear rate. Finally, with non-interacting controller there will be greater fault tolerance to actuator failures.

In precisely the same fashion, the control feedback gain matrix, G, can be formulated. Now, again using steady state optimal regulator theory, the performance index to be minimized is:

$$J = \frac{1}{2} \int_{0}^{\infty} (\overline{X}_{C}^{T} F \overline{X}_{C} + \overline{f}^{T} R \overline{f}) dr$$
 (38)

where

F is an n x n positive semidefinite state weighting matrix

R is an m x m positive definite control weighting matrix

The optimal solution to this minimization problem is

$$G = R^{-1}B_C^T S (39)$$

where s is the solution to the matrix Ricatti Equation:

$$SA_C + A_C^T S - SB_C R^{-1} B_C^T S + F = 0$$
 (40)

Implementing the results of Eqs (36) and (39) with the system Eqs (10) and (11), as well as Eq (32) renders:

$$\dot{\overline{X}}_{C}(t) = (A_{C} + B_{C}G)\overline{X}_{C}(t) + B_{C}G\overline{e}(t)$$
 (41)

$$\dot{\overline{X}}_{s}(t) = A_{s}\overline{X}_{s}(t) + B_{s}G\overline{X}_{c}(t) + B_{s}G\overline{e}(t)$$
 (42)

By taking the step of defining a system state vector incorporating the controlled states, the suppressed states, and the estimator error, such that:

$$\overline{Z}(t) = \left[\overline{X}_{C}^{T}(t) : \overline{e}^{T}(t) : \overline{X}_{S}^{T}(t)\right]^{T}$$
 (43)

a closed loop system model, containing the effects of the suppressed and controlled modes, and utilizing state variable feedback as the control mechanism can be presented as:

$$\frac{\dot{\overline{z}}(t) = \begin{bmatrix} A_c + B_c G & B_c G & 0 \\ 0 & A_c - K C_c & K C_s \\ B_s G & B_s G & A_s \end{bmatrix}}{\overline{z}(t) \tag{44}$$

Recalling that the observation and control feedback gain matrices (K and G) were designed to operate on the controlled modes, the terms KC_S and B_S G create potential problems. These in effect, are known as observation spillover and control spillover, respectively. Although all of the diagonal matrices of

Eq (44) are designed to have purely negative real parts for all eigenvalues, it is obvious that the KC_s and B_sG terms can cause overall system instabilities.

Block Diagram Representation for the Linear Model

In a parallel section of his paper, Sanborn generates the block diagrams representing this new system model in two seperate forms. Since the equations now governing the model are:

$$\frac{\cdot}{X} = A\overline{X} + B\overline{u}$$
 State Equation (45)

$$\overline{Y} = C\overline{X}$$
 Output Equation (46)

$$\overline{u} = G\hat{X}_C$$
 Control Equation (47)

$$\hat{\dot{X}}_{C} = A_{C}\hat{X}_{C} + B_{C}\bar{u} + K(\bar{Y} - \hat{Y})$$
 Estimator Equation (48)

The system can be presented as Fig 4. This diagram can be manipulated per Johnson (Ref 8) to generate a modified block diagram form as shown in Fig 5.

From Fig 5 the closed loop transfer function for the controller is seen to be:

$$\frac{f}{v}(s) = K(SI - A_C - B_C G + KC_C)^{-1}G$$
 (49)

From this transfer function, we know that if any of the eigenvalues of $(A_C + B_C G - KC_C)$ are positive, then the controller is unstable. Since the techniques for generating both the observation and control gain matrices were employed independently, the possibility that an unstable controller is formed exists. Although the controller, when coupled with the plant, would

Figure 4. System in Block Diagram Form

Figure 5. System in Modified Block Diagram Form

produce a stable system, the potentially disastrous effects of an intermittent decoupling must be emphasized. An examination of the eigenvalues of $(A_C + B_C G - KC_C)$ will, therefore, be included in the analysis.

Transformation Matrix Control

It has been shown in what has preceded that, due to observation spillover and control spillover, the system represented by Eq (44) could be made unstable. In an attempt to alleviate this problem we will employ a control technique which attempts to eliminate spillover. This suggests driving the off-diagonal matrices of Eq (44) to zero, while retaining active feedback control of the overall system. An examination of the system equation leads one to realize that, if either B_SG or KC_S are zero, the system eigenvalues revert to the eigenvalues falling on the diagonal. The nature of these diagonal matrices is such that negative eigenvalues (and, hence, system stability) are guaranteed. Obviously, one solution to $B_SG = 0$ is G = 0. However, this solution also renders $B_CG = 0$, and control is forgone. That being the case, the transformation method is directed at constraining the feedback gain matrices such that:

$$B_{g}G = 0 (50)$$

$$KC_{s} = 0 (51)$$

while, at the same time:

$$B_{C}G \neq 0 \tag{52}$$

$$KC_c \neq 0$$
 (53)

To develop this method, we will first look at the conditions required to satisfy Eqs (50) and (52), namely the elimination of control spillover. At the core of this method will be

an attempt to find some transformation matrix, T, such that subsequent control vector, $\overline{U}(t)$, required for Eq (6) will be:

$$\overline{U}(t) = T\overline{z}(t) \tag{54}$$

where $\overline{z}(t)$ is now the new control input and with constraint that:

$$B_{S}T = 0 (55)$$

while:

$$\mathbf{B}_{\mathbf{C}}\mathbf{T} \neq \mathbf{0} \tag{56}$$

One method with which to obtain this transformation matrix employs a technique known as Singular Value Decomposition (Ref 9). Using SVD allows reformulation of the s x m B $_{\rm S}$ matrix as:

$$B_{S} = W \Sigma V^{T}$$
 (57)

where

W is an s x s orthogonal matrix of left singular vectors

V is an m x m orthogonal matrix of right singular vectors

and

$$\Sigma = \begin{bmatrix} S & \vdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & \vdots & 0 \end{bmatrix}$$

$$(58)$$

Such that S is a q x q diagonal matrix of the singular values of $B_{\mathbf{g}}$, or: (continued)

$$S = \begin{bmatrix} \sigma_{1} & 0 & \dots & 0 \\ 0 & \sigma_{2} & \dots & 0 \\ \vdots & & \ddots & \vdots \\ \vdots & & & \ddots & \vdots \\ 0 & & & & \sigma_{q} \end{bmatrix}$$

Singular values are always greater than or equal to zero, and the total number of non-zero singular values is equal to the rank of the decomposed matrix. As long as B_s is full rank with dimensions of s x m, then q is the minimum value of the pair (s,m). By arbitrarily letting r be the difference between q and m, or:

$$q + r = s (59)$$

The W can be partitioned such that:

$$W = \begin{bmatrix} W_q & \vdots & W_r \\ s & x & s \end{bmatrix}$$
 (60)

having:

 W_{q} as an s x q matrix

W_r as an s x r matrix

In a similar fashion, we can choose p as the difference between q and n such that:

$$q + p = m (61)$$

We can now partition the right singular vector matrix, V, as:

$$V = \begin{bmatrix} v_q & \vdots & v_p \\ \vdots & v_p \end{bmatrix}_{m \times m}$$
 (62)

having:

 $\mathbf{v}_{\mathbf{q}}$ as an m x q matrix

 $\mathbf{v}_{\mathbf{p}}$ as an m x p matrix

By defining V_p as our transformation matrix, T, we find some highly desirable results with respect to Eqs (55) and (56), namely:

$$B_{s}^{T} = B_{s}^{V} v_{p} = W_{q}^{S} v_{q}^{T} v_{p}$$
 (63)

However, since V is an orthogonal matrix:

$$v_{\mathbf{q}}^{\mathbf{T}}v_{\mathbf{p}}=0 \tag{64}$$

Hence:

$$B_{S}T = 0 \tag{65}$$

Coordinating this expression for the transformation matrix with the model so far established, it should first be noted that the dimensions of $\mathbf{B}_{\mathbf{g}}$ are directly the result of both the number of modes to be supressed (s) and the number of actuators employed If the rank of the matrix B is equal to the number of actuators available, then q = m. By Eq (61) it is seen that this forces p to be zero. It follows that $V_{p} = T = 0$, and we are restricted to the trivial solution. Recalling the previous committment for the transformation method, this would fail by allowing $B_cT = 0$. It is clear that for the transformation method to be carried to an exact solution, special conditions including q < m must be met. Restated, the rank of B_{q} must be less than the number of actuators. It should, however; be noted that if you are restricted to a fixed number of preoriented actuators, performance is enhanced by using the singular vector associated with the least singular values (even

though $B_ST \neq 0$). In any case, where q = m, an order reduction scheme is required to get an exact non-trivial solution to $B_ST = 0$. As a verifying set of examples, let q be the rank of B_S , and let that matrix have dimensions $s \times m$ with s = 4 and m = 3. If B_S is full rank, q = 3. Therefore by Eq (61), p = 0. However, if we can reduce the rank of B_S to q = 2, then p = 1 and V_D is non-zero. As will be demonstrated, this rank deficiency is obtained either through judicious orientation of the actuators (driving a non-zero singular value to zero) or through addition of actuators and increasing m. The minimum number of actuators that can be used where the former method is employed is two, since a matrix of rank 1 cannot be made rank deficient.

Regardless of how an appropriate non-zero T is formed, we will how have the resultant solution vector in Eq (54), where:

$$\overline{z} = -\overline{G}_{t}\overline{X}_{C} \tag{66}$$

and

$$R_{+} = T^{T}RT \tag{67}$$

such that R_+ is a p x p positive definite matrix, and:

$$B_{+} = B_{C}T \tag{68}$$

with A_B_ completely controllable.

To generate the new control vector, \overline{z} , the same approach as followed in Section III is employed. The control gain matrix is now defined by:

$$G_t = R_t^{-1} B_t^T P_c \tag{69}$$

and

$$P_{C}^{A}_{C} + A_{C}^{T}P_{C} + P_{C}B_{t}R_{t}^{-1}B_{t}^{T}P_{C} + Q_{C} = 0$$
 (70)

where:

 G_{t} is a p x m reduced degree of freedom critical state feedback gain matrix

P is a m x m positive definite solution to the reduced order Ricatti Equation

The gain matrix is therefore finally transformed by:

$$G_{c} = TG_{t} \tag{71}$$

which will produce a new m dimensional control with zero control spillover.

A parallel technique is employed to eliminate the KC_S observation spillover term. Here, the number of sensors must exceed the number of suppressed modes, or C_S must be made rank deficient through sensor re-orientation. The specific methodology for reducing the order of the optimal regulator will be described as part of the computer model, and in the investigation which follows.

Computer Model

Appendix A represents a computer listing for one run of the main program. This particular run applies the transformation method to an eight mode nominal model such that the control spillover (B_SG) is driven to zero. Although the program is seen to be quite lengthy, the comment cards which have been included for clarity suggest the overall straightforwardness of the approach.

As a first step, the parameter matrices (A, B, C) are built. The A matrix portion of the program reads in the natural frequencies from the NASTRAN data, and uses these frequencies and a prescribed damping ratio (0.005) to fill this parameter matrix appropriately. The B and C matrices are formed as a matrix product of mode shapes and actuator or sensor locations. That is, B is formulated as:

$$B = \phi^{T} D \tag{72}$$

where

- D is a direction cosine matrix for the locations and orientations of the prescribed actuators.

Since the sensors and actuators are collocated, it then becomes clear that:

$$C = B^{T} = D^{T} \phi \tag{73}$$

Next, by supplying as an input value the number of modes to be controlled, the program takes the A, B, and C matrices and

generates their controlled and suppressed counterparts (i.e. A_{C} , A_{S} , B_{C} ...). With these matrices formed, along with their transposes, the steady state feedback gain matrices (K and G) are established. Reviewing this process as described in Section III, it is seen that one step involves solution of the steady state matrix Ricatti Equation. This solution is obtained via highly specialized computer subroutines created by Kleinman (Ref 9). With these gain matrices, the total system equation seen as Eq (44) is formed. An eigenvalue analysis using subroutine EIGRF from the International Mathmatical and Statistical Library (IMSL) is completed against the controller (A + B_CG) the observer (A - KC_C), and the entire system. This allows for a stability analysis based on these eigenvalues.

Next, a time history response (20 seconds) is performed on the line of sight in both the x and the y directions at grid point 1. This is accomplished in two steps. First, the CC6600 subprogram library of the Air Force Institute of Technology is implemented such that program ODE (Ref 10) can be used to integrate the state equation:

$$\dot{\overline{X}} = A\overline{X} + B\overline{u} \tag{74}$$

to establish x(t) for t = 0.0, 0.1, 0.2,...20.0. Then, using the mode shapes and, primarily their x and y components at grid point 1, the line of sight magnitudes are formulated such that:

$$X_{1}(t) = \sum_{i=1}^{n} \phi_{i} X_{i}(t)$$
 (75)

and

$$X_{2}(t) = \sum_{i=1}^{n} \phi_{2i} X_{i}(t)$$
 (76)

with

 $X_1(t)$ being the line of sight in the x direction $X_2(t)$ being the line of sight in the y direction

This set of results provides a baseline for comparison of future analyses. Once these plots are completed, a singular value decomposition is performed on $B_{\rm S}$ as the first step in the transformation method. The actuator corresponding to grid point 7 is rotated incrementally until the least singular value of $B_{\rm S}$ becomes nearly zero. In effect, this reduces the rank of $B_{\rm S}$. With this new orientation, a new control gain matrix (G) is formed using the methods described in Section III. Also, new B and C matrices are created to account for the reoriented sensor/actuator pair.

With these new values, the program returns to the eigenvalues obtained previously. The fact that the system eigenvalues are those of the diagonal members is born out. New plots are then generated so as to compare the time history responses with and without control spillover. This same approach is followed in driving the observation spillover (KC_S) to zero. This set of runs demonstrates the improvement available without adding hardware.

Finally, two sensors are added at grid point one to examine the effectiveness of adding some fairly simple hardware (as opposed to adding actuators). These two sensors are given an

orientation typical to those sensors already prescribed. This run is repeated against a twelve mode model to verify the legitimacy of the first truncation of higher modes. It should be noted that the selection of two additional sensors at grid point one was arbitrary. Any number of additional sensors could be added at any location for this final study.

Investigation

Outline

A systematic approach toward assessing the effectiveness of the transformation method was initiated. As a first case, the system eigenvalues and line of sight time history responses were examined for models with and without control spillover (B_cG). The transformation technique was only applied to the control gain (G). The sensor/actuator pairs remained collocated, while one of these pairs was rotated to produce an additional zero singular value to B. An angular orientation was obtained which produced a rank reduction in the suppressed control matrix. The weighting function of the controlled states, \overline{X}_{c} , was set at the identity matrix. Upon successful completion of this first case, the process was repeated with increasingly higher control weighting. Then, this set of runs was compared to the case of eliminating observation spillover (KC_s) , rather than control spillover. The purpose of this alteration to the main program is twofold. First, it would demonstrate that the total system matrix (Eq (44)) is block diagonalized successfully by forcing either of the spillover terms to zero. Second, it facilitates the final area of investigation; namely the potential benefits of sensor additions. The addition of sensors (rather than actuators) within the prescribed model was chosen out of practicality. From a "hardware" viewpoint, the addition of sensors is seen to be considerably more realistic than the addition of point force actuators.

For all cases examined, the overall attempt is to reduce the line of sight error in the x and y directions at grid point one to less than 0.0004 radians and less than 0.00025 radians respectively in 20 seconds.

Elimination of Control Spillover

In an attempt to further clarify the direction of this analysis recall from Sections II and III that the control gain matrices are determined using steady state optimal regulator theory, which involves minimization of related quadratic performance indices. These performance indices for the model with and without spillover are:

$$J = \frac{1}{2} \int_{0}^{\infty} (\overline{X}_{c}^{T} F \overline{X}_{c} + \overline{u}^{T} R \overline{u}) dt$$

$$J = \frac{1}{2} \int_{0}^{\infty} (\overline{X}_{c}^{T} F \overline{X}_{c} + \overline{U} R_{t} \overline{U}) dt$$

respectively.

An inspection of these two indices demonstrates the role of the control weighting matrix, F, as an amplifier of the resultant gains applied to the controlled states. All cases run attempt to control the first two modes and suppress the remaining six. An attempt to modify, and ultimately improve performance is tied to increasing the magnitude of this weighting matrix. It is known from the previously developed theory that increasing the magnitude of the control gain (here G) has the coincident negative effect of increasing control spillover. It is with this awareness that the first study is accomplished. This study involves generating the system matrix and examining

the eigenvalues and associated line of sight time history response. Once these data are generated, the transformation technique of Section III is applied to force B_GG to zero.

Table 4 is a presentation of data pertinent to the first case in which F is set at the identity matrix. Both sets of system eigenvalues exhibit stability. Additionally, eigenvalues of the entire system are the same as the eigenvalues of the matrices on the diagonal, verifying that control spillover has been eliminated. It should also be noted that the transformation method has generated a controller (A + B_CG - KC) that is unstable, but which, none-the-less, produces a stable system. Figures 6 through 9 represent the time history responses for the x line of sight and y line of sight errors. Although a precise bandwidth on the error is difficult to establish, it is obvious that the prescribed limits specified in the outline portion of this section have not been satisfied.

The next step then involves multiplying the F matrix by scalar powers of ten (i.e. 1, 10, 100,...). Until F reaches 1000[I], there is no significant improvement in the line of sight error for either the case with or without control spillover. However, at the F 1000[I], significant changes in the system response become evident. Table 5 is a presentation of the associated eigenvalues for this case. Clearly, the spillover terms have now forced the system (without transformation of the control gain) unstable. The eigenvalues after gain transformation, however, still exhibit stability. This demonstrates the certain advantages of using this method. Figures 10 and 11

depict line of sight errors without transformation and demonstrates the unstable response indicated by the associated eigenvalues. The time histories of Figures 12 and 13 present an x line of sight error for the system with $B_SG=0$ within an approximate bandwidth of $\pm .0013$, and a y line of sight error of $\pm .0008$. As the control gain weighting function is increasing there is no significant improvement of response. The trend of these data suggests that the criteria for pointing accuracy cannot be met with the prescribed number of sensors and actuators (6 each). It is clear, for the reasons highlighted, that sensors will have to be added.

Table IV Elimination of Control Spillover; F = 1.0[I]

System Eigenvalues

<u>57</u>	stem Eigenvalues) -
Before Transformation $(B_SG\neq 0)$		After Transformation (B _S G=0)
02822 ± 5.70935i	- S	02855 ± 5.71073i
02838 ± 5.67583i	-s	02838 ± 5.67583i
02553 ± 5.14848i	- S	02575 ± 5.14935i
01918 ± 3.84804i	- S	01924 ± 3.84834i
01778 ± 3.55770i	- S	01778 ± 3.55770i
01467 ± 2.96372i	- S	01482 ± 2.96458i
08663 ± 1.47902i	-C	07712 ± 1.46602i
06679 ± 1.18915i	-C	00751 ± 1.17064i
06279 ± 1.45703i	- 0	08627 ± 1.46583i
03768 ± 1.16069i	- O	04420 ± 1.17052i
Eig	envalues of A _C +	· B _C G
07457 ± 1.46607i	-c-	07712 ± 1.46602i
05199 ± 1.17046i	-C-	00751 ± 1.17064i
Eig	envalues of A -	KC _C
07457 ± 1.46607i	-0-	08627 ± 1.46583i
05199 ± 1.17046i	-0-	04420 ± 1.17052i
Figany	alues of A + B	G - KC

Eigenvalues of $A_C + B_CG - KC_C$

00733 ± 1.46222i	.00194 ± 1.46119i
00585 ± 1.16818i	.03072 ± 1.17082i

C = Controlled Mode Eigenvalues

S = Suppressed Mode Eigenvalues

0 = Observer Mode Eigenvalues

Figure 6. LOSX VS. TIME, $B_sG \neq 0$, F = 1.0

Figure 7. LOSY VS. TIME, $B_sG \neq 0$, F = 1.0

Figure 9. LOSY VS. TIME, $B_SG = 0$, F = 1.0

Table V Elimination of Control Spillover; F = 1000.0[I]

System Eigenvalues

Before $\underline{\text{Transformation } (B_{S}G\neq 0)}$		After Transformation (B _S G=0)
.09178 ± 5.73850i	-S-	02855 ± 5.71073i
02838 ± 5.67583i	-S-	02838 ± 5.67583i
.03098 ± 5.17892i	-S-	02575 ± 5.14935i
00835 ± 3.85687i	-S-	01924 ± 3.84834i
01764 ± 3.55783i	-S-	01778 ± 3.55770i
.01328 ± 2.98115i	-S-	01482 ± 2.96458i
300048 + 0i	-C-	-3.11793 + 0i
-1.15711 + 0i	-C-	-1.46147 + 0i
-1.66482 ± .80887i	-C-	02000 ± 1.17188i
07067 ± 1.46398i	-0-	08627 ± 1.46583i
04480 ± 1.16631i	-0-	04420 ± 1.17064i
Eig	envalues of $A_{C} + B_{C}G$	
-2.89759 + 0i	-c-	-3.11793 + 0i
-1.53062 + 0i	-c-	-1.46147 + Oi
-1.5091- ± .74849i	-c-	02000 ± 1.17188i
Eig	envalues of A _C - KC _C	
07458 ± 1.46608i	-0-	08627 ± 1.46583i
05199 ± 1.17046i	-0-	04420 ± 1.17064i
Eigenv	alues of A +B G -KC	
-3.02017 + 0i		-3.23401 + 0i
-1.46304 ± .64937i		-1.18781 + 0i
-1.27355 + 0i		01849 ± 1.17817i

- C = Controlled Mode Eigenvalues
- S = Suppressed Mode Eigenvalues
- O = Observer Mode Eigenvalues

Figure 10. LOSX VS. TIME, $B_sG \neq 0$. F = 1000.0

Figure 11. LOSY VS. TIME, $B_sG \neq 0$, F = 1000.0

Figure 13.

Elimination of Observation Spillover

The approach taken during this portion of the analysis is directed by an awareness, a priori, that sensors will be added. As a preliminary step, the procedure for applying the transformation method to the control gains is first reapplied to the observation gain (K). The same sensor and actuator pair at grid point seven is again rotated until the smallest singular value of $\mathbf{C}_{_{\mathbf{S}}}$ is driven to zero. Table VI presents the results of the eigenvalue analysis which followed. Q replaces F as the observation weighting matrix acting on the controlled states. Once again, the system matrix is seen to be stabilized and diagonalized via the transformation method. A more pertinent case, in light of a forthcoming examination of sensor additions, is an application of the transformation method to the system with the sensors in their original orientation. Table VII, below, lists the singular values of C_s for the fixed six sensors. An examination of their relative magnitudes indicates that, although the last singular value is non-zero, some potential benefits may be gained by applying the transformation method with this singular value and its associated right singular vector.

Number	Singular Value
1.	.70706
2. 3.	.70423 .70363
4.	.49803
5. 6.	.42875 .28536
0.	.20330

Table VI Elimination of Observation Spillover; Q = 1000.0 [I]System Eigenvalues

Before Transformation (KC _s #	<u>0)</u>	After Transformation (KC _s =0)
.12469 ± 5.69223i	-S-	02855 ± 5.71073i
02838 ± 5.67583i	- S-	02838 ± 5.67583i
.06669 ± 5.15788i	- S-	02575 ± 5.14935i
.00396 ± 3.85266i	-S-	01924 ± 3.84834i
01746 ± 3.55780i	- S-	01778 ± 3.55770i
.03719 ± 2.97542i	-s-	01482 ± 2.96458i
06713 ± 1.45779i	-C-	08626 ± 1.46583i
03931 ± 1.16093i	-C-	04420 ± 1.17052i
-2.33756 ± .32019i	-0-	52896 ± 1.42215i
-1.72715 ± 1.20427i	-0-	05307 ± 1.17791i
<u>E</u>	igenvalues of $A_{C} + B_{C}G$	
07457 ± 1.46607i		08626 ± 1.46583i
05199 ± 1.17046i	-C-	04420 ± 1.17052i
<u>E</u>	igenvalues of A - KC	
-2.89750 + 0i	-0-	52896 ± 1.42215i
-1.50921 ± .74854i	-0-	05307 ± 1.17791i
-1.15308 + 0i	-0-	

Eigenvalues of $A_c + B_cG - KC_c$

.43833 ± 1.59171	1.45136 ± .959056i	.40005	±	1.16987i
-2 12224 + 1 21621; .43033 I I.371/I.		.43833	±	1.59171i

C = Controlled Mode Eigenvalues

S = Suppressed Mode Eigenvalues

O = Observer Mode Eigenvalues

Table VIII

Reduction of Observation Spillover; Q = 1000.0[I] (Fixed Sensors)

System Eigenvalues

Before Transformation (KC _s ≠0)		After Transformation (KC _s ≠0)		
.12469 ± 5.69223i	-s-	06666 ± 5.71292i		
02838 ± 5.67583i	-S-	02838 ± 5.67583i		
.06669 ± 5.15788i	-S-	.09387 ± 5.21012i		
.00396 ± 3.85266i	-s-	05836 ± 3.81382i		
01746 ± 3.55780i	- S-	01331 ± 3.56096i		
.03719 ± 2.97542i	-s-	02278 ± 2.96146i		
06713 ± 1.45779i	-C-	02024 ± 1.47982i		
03931 ± 1.16093i	-C-	$09759 \pm 1.10147i$		
-2.33756 ± .32091i	-0-	27202 ± 1.34862i		
-1.72715 ± 1.20427i	-0-	03520 ± 1.20825i		
Eigenval	ues of A	+ B _C G		
07457 ± 1.46607i	-C-	07457 ± 1.46607i		
05199 ± 1.17046i	-C-	05199 ± 1.17046i		
Eigenval	ues of A	- KC _C		
-2.89750 + 0i	-0-	20967 ± 1.17020i		
-1.5308 + 0i	-0-	04992 ± 1.46369i		
-1.50921 ± .74854i	-0-			
Eigenvalues of A _C + B _C G - KC _C				

1.45136 ± .95906i	01187 ± 1.48607i
2.13224 ± 1.3163i	.13171 ± 1.18510i

C = Controlled Mode Eigenvalues

S = Suppressed Mode Eigenvalues

O = Observer Mode Eigenvalues

The results of this analysis bear out our expectations. First, some observability has been gained, and response is improved. This is born out by examining Figs 14 through 17, which are the line of sight response histories with and without transformation. However, an examination of Table VIII shows that the additional observability was not sufficient to generate a completely stable system. The observation spillover has been reduced, but not eliminated.

Sensor Additions

Until now, we have seen that the transformation method can be successfully applied to the tetrahedron. Spillover can be minimized or completely eliminated, depending on whether or not sensor and actuator reorientations are permitted. In reality, it is perhaps more likely that one would have less than complete liberty to do this. Regardless, the specified line of sight criteria has not been met. Hence, we are left with sensor additions as a last resort.

Two sensors were added to the system at grid point one.

This number and location are essentially arbitrary, but will serve as a starting point for more exhaustive subsequent analyses. Table IX, using the format applied throughout this report, presents the results of this case. It is clear that sensor additions have allowed the same system matrix block diagonalization as previous techniques. However, as has been the case previously, Figs 18 through 21 demonstrate that the criteria for line of sight response has not been met. The improvement to note is

between time history response associated with Table VIII and that of Table IX. Clearly, the addition of sensors has enhanced the overall performance.

Table IX Elimination of Observation Spillover; Q = 1000.0 System Eigenvalues

Before		After
Transformation (KC _s ≠ 0	<u>))</u>	Transformation $(KC_s=0)$
01473 ± 5.71307i	-S-	02855 ± 5.71071i
02838 ± 5.67583i	-S-	02838 ± 5.67583i
.02350 ± 5.15484i	-S-	02575 ± 5.14935i
05240 ± 3.84096i	-S-	01924 ± 3.84834i
01538 ± 3.55804i	-S-	01779 ± 3.55770i
02363 ± 2.96131i	-S-	01482 ± 2.96458i
07371 ± 1.46483i	-C-	07457 ± 1.46607i
05187 ± 1.17031i	-C-	05199 ± 1.17046i
~15.6899 + 0i	-0-	03632 ± 1.19306i
-5.60922 + 0i	-0-	00733 ± 1.46676i
-1.20084 + 0i	-0-	
-1.02196 + 0i	-0-	
<u>E</u> j	$\frac{1}{C}$	
07457 ± 1.46607i	-C-	07457 ± 1.46607i
05199 ± 1.17046i	-C-	05199 ± 1.17046i
Ei	genvalues of A _C - KC	
-15.69921 + 0i	-0-	03632 ± 1.19306i
-5.62028 + 0i	-0-	00733 ± 1.46676i
-1.15106 + 0i	-0-	
-1.01144 + 0i	-0-	
Eige	envalues of A _C +B _C G -	кс _с
15.33771 + 0i		07457 ± 1.46231i
4.12626 + Oi		02153 ± 1.19748i
2.48129 + 0i		
1.25725 + 0i		

Figure 19. LOSY VS. TIME, $KC_s \neq 0$, 9 Sensors, Q = 1000.0

Figure 20. LOSX VS. TIME, $KC_s = 0$, 8 Sensors, Q = 1000.

6 2

Conclusions

Two key conclusions can be drawn from the preceding analyses. First, given a fixed number of sensors and actuators with fixed orientation, the destabilizing effect of observation spillover and control spillover can be "minimized". When a reorientation of those sensors and actuators is permitted, these spillover effects can be completely eliminated. Elimination of either control spillover or observation spillover guarantees system stability, regardless of whether or not response criteria are satisfied. Second, if sensor reorientation is not allowed, complete elimination of observation spillover can still be accomplished through sensor additions.

The transformation method was found to be very effective in eliminating control spillover and uncoupling system eigenvalues when the number of actuators in the system is greater than the number of modes to be suppressed. When the number of modes to be suppressed is equal to the number of actuators, complete elimination of control spillover can be accomplished through an actuator reorientation which reduces the rank of the control matrix, B. A parallel case can be made for the elimination of observation spillover where the number of sensors is greater than or equal to the number of suppressed modes. When reorientation is not permitted, the degree of response improvement is strictly a function of the relative magnitudes of the singular values of the decomposed matrices. For the specific cases examined, the truncation of higher frequency modes was seen to be

valid. This truncation may not hold against other models.

Recommendations

The major theme of this analysis suggests that, due to the complexity of larger and larger space systems, controllers will have to be developed to operate on only those modes critical to system response. This requirement is imposed due to limited computer and hardware capabilities. Since line of sight was established as the performance criteria in this study, the modes were arranged in order of decreasing displacement at the selected grid point. The decision to control two modes and to suppress six was arbitrary. Since the selection of "critical modes" is the starting point in developing an eventual controller, the importance of this step cannot be overemphasized. No automated technique for this process is currently available. An exhaustive re-application of the computer technique found in Appendix A may result in satisfaction of the prescribed time response criteria. More importantly, valuable insight into this task of critical mode selection might be obtained as fallout from this study. In a parallel sense, the selection of two sensors to be added for the final case examined was also arbitrary. Once again, a follow up with varying numbers and locations of additional sensors would be necessary to develop the optimal controller for this model. Finally, sensitivity to modelling inaccuracies would be a natural topic for further analysis. Parameter variations would have to be incorporated into the NASTRAN analysis provided in order to simulate mode shape and frequency errors for this sensitivity study.

Bibliography

- 1. Balas, M.J. "Active Control of Flexible Systems," AIAA
 Symposium on Dynamics and Control of Large Flexible Spacecraft, Blacksburg, June 14, 1977.
- 2. Sesak, J.R. "Control of Large Space Structures Via Singular Perturbation Optimal Control," <u>AIAA Conference On Large Space Platforms: Future Needs and Capabilities</u>, Los Angeles, California, September 27-29, 1978.
- 3. Coradetti, T. "Orthogonal Subspace Reduction of Optimal Regulator Order," General Dymanics/Convair Division, San Diego, California.
- 4. Strang, G. <u>Linear Algebra</u> and <u>Its Applications</u>. New Your: Academic Press, 1976.
- 5. Sanborn, K.D. "Modern Optimal Control Methods Applied in Active Control of a Cantilever Beam in Bending Vibration," Unpublished MS Thesis, School of Engineering, Air Force Institute of Technology, Wright Patterson Air Force Base, Ohio, December, 1979.
- 6. Fager, J.A. "Large Space Erectable Antenna Stiffness Requirements," <u>Journal of Spacecraft and Rockets</u>, 17: 86-92, (March-April, 1980.
- 7. Meirovitch, L. Methods of Analytical Dynamics. New York: McGraw-Hill Book Company, 1970.
- 8. Johnson, C.D. "State-Variable Design Methods May Produce Unstable Feedback Controllers," <u>International Journal of Control</u>, 29: 607-619, 1979.
- 9. Kleinman, D.L. A <u>Description of Computer Programs for Use in Linear Systems Studies</u>. The University of Connecticut School of Engineering TR-77-2. Storrs, Connecticut, July 1977.
- 10. AFFDL-TM-78-97-FBR. Solution of Ordinary Differential Equations on the CDC 66001/Cyber 74 Processors II, Air Force Flight Dynamics Laboratory, Wright Patterson Air Force Base, Ohio, September, 1978.

Appendix A

Eigenvector Results of NASTRAN Analysis

Real Eigenvectors

Eigenvalue 1 = 1.37043E+00	Eigenvalue 2 = 2.15145E+00
Eigenvector 1 = \begin{array}{l} -2.47073E-01 \\ 4.27857E-02 \\ 1.45180E-06 \\ -1.96263E-02 \\ 3.39753E-02 \\ -7.21326E-02 \\ -3.69602E-02 \\ 4.39747E-02 \\ -1.96224E-02 \\ 5.29624E-02 \\ 4.39672E-02 \end{array}	Eigenvector 2 = \begin{bmatrix} 3.99896E-01 \\ 2.30929E-01 \\ -1.48908E-01 \\ 8.32862E-02 \\ 4.80849E-02 \\ 6.81283E-02 \\ 6.99996E-02 \\ 2.25294E-02 \\ -4.72104E-02 \\ 4.93610E-02 \\ 4.72153E-02 \end{bmatrix}
Eigenvalue 3 = 8.78894E+00	Eigenvalue 4 = 1.26576E+00
Eigenvector 3 = \[\begin{align*} 6.36794E-02 \\ 3.67778E-02 \\ 4.00015E-01 \\ 1.98377E-01 \\ 1.14530E-01 \\ 2.00976E-01 \\ 1.54760E-01 \\ 6.80356E-02 \\ 9.78233E-02 \\ 1.36292E-01 \\ 1.00014E-01 \\ 9.78391E-02 \end{align*} \]	Eigenvector 4 = \begin{array}{cccccccccccccccccccccccccccccccccccc
Eigenvalue 5 = 1.48101E+01	Eigenvalue 6 = 2.65165E+01
Eigenvector 5 = \begin{array}{cccccccccccccccccccccccccccccccccccc	Eigenvector 6 = \[\begin{array}{cccccccccccccccccccccccccccccccccccc

```
Eigenvalue 7 = 3.22159E+01
                                         Eigenvalue 8 = 3.26133E+01
Eigenvector 7 = \begin{bmatrix} -2.66140E - 02 \end{bmatrix}
                                         Eigenvector 8 = -2.99367E-02
                   4.60655E-02
                                                            -1.73093E-02
                   3.30215E-05
                                                            8.78423E-02
                   3.37411E-02
                                                            4.07052E-02
                  5.84417E-02
                                                            2.35996E-02
                   3.23144E-05
                                                            3.55373E-02
                  2.73330E-02
                                                            2.74211E-02
                  -5.48104E-02
                                                            2.79794E-02
                  -4.91269E-01
                                                            4.87453E-01
                  3.38171E-02
                                                            3.79914E-02
                  -5.10814E-02
                                                            9.80954E~03
                  4.90852E-01
                                                           -4.87867E-01
Eigenvalue 9 \approx 7.99170E+01
                                         Eigenvalue 10 =
                                                           1.06164E+02
Eigenvector 9 \approx 59.90668E-02
                                         Eigenvector 10 = [-3.38986E - 03]
                  5.72029E-02
                                                            5.84999E-03
                  1.72892E-01
                                                           -1.60534E-05
                  1.07566E-01
                                                           -2.28617E-01
                  6.21328E-02
                                                            3.95968E-01
                  -4.95312E-01
                                                            4.96376E-05
                 -1.67880E-01
                                                            3.78349E-01
                 -2.19818E-01
                                                            4.55436E-02
                 -1.11010E-02
                                                           -1.47053E-02
                 -2.74347E-01
                                                           -2.28600E-01
                 -3.55381E-02
                                                           -3.04859E-01
                L-1.10861E-02
                                                           1.47172E-02
Eigenvalue 11 = 1.19320E+02
                                         Eigenvalue 12 \approx 1.95068E+02
Eigenvector 11= 6.36959E-02
                                         Eigenvector 12= 3.20580E-02
                  3.67781E-02
                                                            1.85105E-02
                  9.58836E-02
                                                           6.43806E-02
                 -2.40062E-01
                                                           -4.02579E-01
                 -1.38592E-01
                                                           -2.32435E-01
                 -2.60496E-01
                                                          -1.30450E-01
                 -8.60592E-02
                                                           3.20382E-01
                  3.94412E-01
                                                          -1.58741E-01
                  6.96952E-03
                                                          -9.27787E-03
                  2.98410E-01
                                                           2.27168E-02
                 -2.71939E-01
                                                           3.56828E-01
                  6.97073E-03
                                                          -9.28169E-03
```

Eigenvector = $\{x_1, y_1, z_1, \dots, z_L\}^T$

Appendix B

Main Program Listing

```
PROGRAM TETRA (INPUT=/80,0UTPUT=/132, [APE5, TAPE6, TAPE7)
1
                   DIMENSION Y(20), YP(20), WORK(520), INORK(5)
                   DIMENSION CCN8(8,16), CSP8(8,16), CCNT(16,8), CT(16,1)
                   DIMENSION T1 (1,6), TT1 (6,1), V2 (16,1), CTT (1,16)
5
                   DIMENSION VV2(16,16),S2(10,16),ULK2(16,15);UK1(1,16)
                   DIMENSION OK2(1,16), OKT (16,15)
                   DIMENSION XX1(203), XX2(203), XX3(203), XX4(203), XX5(203), XX5(203)
                   DIMENSION XX7(203), XX8(203), TM(203), X1(293), X2(203)
                   DIMENSION Z8(20,20)
                   DIMENSION T2(2,8),TT2(8,2),CT2(15,2),RT2(2,8),RT3(2,2)
10
                   DIMENSION V3(4,2),CTT2(2,16),VV3(4,4),S3(16,16),ULX3(16,15)
                   DIMENSION RTII(2,2), OK3(2,15), OK4(2,16), OKT2(8,4)
                   DIMENSION BO (16, 16), SV(8), W_ (16)
                   DIMENSION R1(8,8), RR1(8,8), RR1(8,8)
15
                   DIMENSION PHI(12,16), PHIT(15,12), J(12,6), J1(8,12)
                   DIMENSION PHIT5(8,12), PHI5(12,8), BR(8,6), BRG(8,4), CR(8,8)
                   DIMENSION KCR(16,8)
                   DIMENSION CSP4(12,8)
                   DIMENSION ATOT(16,16), BTOT(15,6), CTOT(8,16)
26
                   DIMENSION ACON(16,16), ASUP(16,15), 3CUN(15, E), 8SUP(16,6)
                   DIMENSION CSP9(16,8)
                   DIMENSION CY(16,16), ACN6 (16,16)
                   DIMENSION WK(32), CCT(16,16), CN(15,16)
                   DIMENSION WK1(32), WK2(32), WK3(32)
                   DIMENSION ACN1(16,16), UC(16,16)
25
                   DIMENSION CCON(8, 16), CSUP(8, 16)
                   DIMENSION CCN2(8,16), CCN1(15,8), BCN1(16,5)
                   DIMENSION ACN2(16,16),CX(16,16),ULX(16,15)
                   DIMENSION BCN2(6,16),CSP1(8,16),BSP1(16,5)
                   DIMENSION COM3 (16, 16), C (16, 16)
30
                   DIMENSION R(6,6), Q(16,16), RY(6,15), AJONT(16,16), CCONT(16,8)
                   DIMENSION RX(8,16),P(16,16),OKTRN(3,16),OK(16,8),RR(6,6)
                   DIMENSION BTT(1,16), UL(16,15), CC(12,16), OSPILL(16,16)
                   DIMENSION CSPILL (16, 16), FO(16, 16)
                   NIMENSION COM1(16,16/,COM2(16,15),S(16,15),GO(6,16)
35
                   DIMENSION CO(16,16), COC(16,16)
                   DIMENSION SS(16,16), RRR(6,6), RU(15,8), RV(16,6)
                   DIMENSION Z7(15,16), SO(16,15), BCONT (5,15)
                   DIMENSION PHIT1(16,12), BSP3(16,5), 3SP4(15,6), PHIT2(16,12)
                   OIMENSION T(6,1), TT(1,6), BT(16,1), RT1(1,5)
                   DIMENSION RT (1,1), V1 (16,1), VV (16,15), S1 (16,16)
                   DIMENSION ULX1(16,16),QQ(15,16),RFI(1,1),GO1(1,15),GO2(1,16)
                   COMPLEX W(20), 70(20, 20), WW(5), 700(8,8)
                   COMPL EX W1(6), W2(8), W3(8), 71(8,8), 72(8,8), 73(6,8)
                   INTEG ER FFF, F1, F2, F3, F4, GGG, G1, G2, S3, G4
45
                   INTEGER N5, N6, N7
                   INTEGER KZ
                   INTEGER NB,KK
                   INTEGER F5.NZ
                   INTEGER IFLAG, NEON, JJ
50
                   INTEGER NY
                   INTEGER INIT
                    INTEGER IZ, NN, IJOR
                    INTEGER L, MO, NO, IA, IB, IC
55
                    INTEGER I, J, N, M, F, G, FF, GG
                    INTEGER NOIM, NOIM1, KIN, KOUT, KPUNCH
                    REAL TI, TOUT, RELERR, ABSERR
```

```
REAL G1,02,03,04,05
                     REAL 06
                     REAL TOL
 60
                     REAL BB
                     COMMON Z9(26,20)
                     COMMON/MAIN1/NDIM, NDIM1, COM1
                     COMMON/INOUT/KOUT, KIN, KPUNCH
 65
                     COMMON/MAIN2/COM2
                     COMMON/MAIN3/COM3
                     EXTERNAL XDOT
                     READ* ,N5
 70
                     NDIM= 16
                     NOIM1 = 17
                     TOL=. 901
                     KIN=5
                     KOUT=6
 75
                     KPUNCH=7
                     IFR=1
                     DAMP= .005
                     NY=0
                     N7=5
 80
                     KK=8
              1
                     M=8-N5
                     F5=2* N5
                     G=2+M
                     FF=N5+1
 85
                     GG=M+1
                     F1=F5 +1
                     F2=2+ F5
                     F3=F2+1
                     F4=F2+G
 90
                     IF (KK .GT . 2) GO TO 37
                     READ*, N6
READ*, N7
              C
              Č
 95
                     CREATE A MATRIX
              3
                     00 20 I=1,18
                     00 10 J=1,16
196
                     0.6=(L,I)70TA
              10
                     CONTINUE
              23
                     CONTI NUE
                     DO 30 I=1,8
                     J=I+8
105
                     ATOT(I,J)=1.5
              39
                     CONTINUE
                     DO 35 I=9,16
                     J=1-8
                     READ*, ATOT(I, J)
114
              35
                     CONTI NUE
                     DO 36 I=9,16
                     READ",ATOT(1,I)
                     ATOT(I,I) = -DAMP+2.+ATOT(I,I)
              35
                     CONTI NUE
```

```
115
               37
                      PRINT *, **
                      PRINT *,"
                      PRINT +, "
                      PRINT*, "THIS RUN REPRESENTS AN ANALYSIS FOR AN EIGHT MODE"
                      PRINT*, "APPROXIMATION TO THE SYSTEM, WITH ", N5," MODES"
                      PRINT *, "CONTROLLED AND ", M, " MODES SUPPRESSED"
120
                      PRINT *, **
                      IF (NZ.GT.0) GO TO 169
                      PRINT *,"
               COC
125
                      CREATE B MATRIX
               ;
               32
                      DO 73 I=1,8
                      DO 50 J=1,6
133
                      3TOT (I, J) = 0 . U
               59
                      CONTI NUE
               7 1
                      CONTINUE
                      00 72 I=1,16
135
                      DO 71 J=1,16
                      C(I,J)=0.8
                      IF(I \cdot EQ \cdot J) C(I \cdot J) = 1 \cdot J
               71
                      CONTINUE
               72
                      CONTINUE
140
                      DO 74 I=1,12
                      DO 73 J=1,E
                      D(I, J)=0.0
               73
                      CONTI NUE
               74
                      CONTI NUE
                      DO 76 I=4,6
145
                      00 75 J=1,2
                      READ*, D(I,J)
               75
                      CONTINUE
               75
                      CONTINUE
154
                      DO 78 I=7,9
                      DO 77 J=3,4
                      READ* ,D(I,J)
               77
                      CONTI NUE
               78
                      CONTI NUE
                      00 80 I=10,12
00 79 J=5,6
155
                      READ*, D(I, J)
               79
                      CONTI NUE
               80
                      CONTINUE
161
                      DO 82 I=1,12
                      DO 91 J=1,8
                      PHI(I,J)=6.6
                      CONTI NUE
               81
               32
                      CONTINUE
165
                      DO 34 J=9,16
                      NO 83 I=1,12
                      READ*, PHI(I,J)
               83
                      CONTINUE
                      CONTINUE
               34
170
                      00 86 I=1,16
                      00 85 J=1,12
```

```
PROGRAM TETRA
```

```
PHIT(I,J)=PHI(J,I)
                     CONTINUE
              85
                     CONTINUE
              35
175
              37
                     L1=16
                     M0 = 12
                     NO=5
                     IA=15
                     19=12
186
                     IC=16
                     CALL VMULFF (PHIT, D, L1, MO, NO, IA, IB, STOT, IC, IER)
              0000
                     CREATE C MATRIX
185
              C
                     IF (NY .GT . 1) GO TO 58
              121
                     IF (N6 .GT . 6) GO TO 113
                     no 111 I=1,6
190
                     00 116 J=1,12
                     D1(I, J) = D(J, I)
              117
                     CONTINUE
                     CONTINUE
              111
                     L1=N5
              118
195
                     MO=12
                     NO=16
                     IA = 8
                     I9=12
                     IC=8
200
                     CALL VMULFF (D1, PHI, L1, MO, NO, IA, IB, CTOT, IC, IER)
                     DO 146 I=1,N6
                     DO 145 J=1,8
                     STOT(I,J) = CTOT(I,8+J)
              145
                     CONTINUE
205
              14F
                     CONTINUE
                     00 148 I=1, N6
                     00 147 J=9,16
                     CTOY(I,J)=0.0
              147
                     CONTINUE
218
              148
                     CONTINUE
                     GO TO 150
              113
                     DO 115 I=1,2
                     DO 114 J=1,12
                     D1 (I, J)=1.1
215
              114
                     CONTI NUE
              115
                     CONTINUE
                     01(1,1)=.3535533906
                     D1(1,2)=-.6122837618
                     D1(1,3)=.7071067812
22
                     01(2, 1) = -.3535533936
                     01(2, 2) = .6122637618
                     01(2,3)=.717167812
                     D7 117 I=3,8
                     00 116 J=1,12
                     01(I, J)=B(J, I-2)
              116
                     CONTINUE
              117
                     CONTINUE
                     L1=N5
                                             74
```

```
40=12
                    NO=16
230
                     I4=9
                     19=12
                     IC=8
                     CALL VMULFF(D1,PHI,L1,MO,NO,IA,1B,CTOT,IC,IER)
                     nn 54 I=1,8
235
                     DO 53 J=1,8
                     CTOT(I,J) =CTOT(I,J+6)
              53
                     CONTINUE
              54
                     CONTINUE
240
                     DO 56 I=1,8
                     JO 55 J=9,1E
                     CTOT(I,J)=0.0
              55
                     CONTINUE
              56
                     CONFINUE
                     IF (N7.GT.6) GO TO 134
245
              159
              C
              3
                     CREATE A CONTROLLED AND A SUPPRESSED
250
              169
                     DO 180 I=1,N5
                     DO 179 J=1,N5
                     ACON(I,J) = ATOT(I,J)
              174
                     CONTI NUE
                     CONTINUE
              189
255
                     DO 200 I=1,N5
                     DO 190 J=FF,F5
                     ACON(I,J) = ATOT(I,M+J)
              190
                     CONTINUE
              200
                     CONTI NUE
260
                     DO 229 I=FF,F5
                     DO 218 J=1,N5
                     ACON(I,J) = ATOT(I+M,J)
              210
                     CONTINUE
              22 1
                     CONTINUE
265
                     DO 240 I=FF,F5
                     DO 233 J=FF,F5
                     ACON(I,J) = ATOT(I+M,J+M)
              230
                     CONTINUE
              240
                     CONTI NUE
27C
                     DO 268 I=1, M
              54
                     00 250 J=1,M
                     (3N+1)TOTA=(L,I)TUZA
              250
                     CONTI NUE
275
              260
                     CONTINUE
                     NO 280 I=1, M
                     nn 278 J=GG,G
                     ASUP(I,J) = ATOT(I+N5,J+2*N5)
               27 9
                     CONTINUE
                     CONTINUE
286
              280
                     DO 30 0 I=GG,G
                     DO 298 J=1, M
                     ASUP(I,J)=ATOT(24N5+1,N5+J)
               290
                     CONTINUE
               330
                     CONTINUE
                                          75
285
```

```
00 320 I=GG,G
                     no 310 J=GG,G
                     ASUP(I,J) = ATOT(2*N5+I,2*N5+J)
              31.9
                     CONTINUE
                     CONTINUE
290
              32 n
                     CREATE B CONTROLLED AND B SUPPRESSED
295
              58
                     DO 349 I=1,N5
                     00 33  J=1,6
                     BCON(I,J) = BTOT(I,J)
              339
                     CONTINUE
336
              343
                     CONTI NUE
                     00 360 I=FF,F5
                     00 350 J=1,6
                     9CON(I,J) = 9TOT(I+M,J)
              350
                     CONTI NUE
335
              35 n
                     CONTINUE
              113
                     DO 380 I=1, M
                     DO 37 0 J=1,6
                     BSUP(I,J) = BTOT(N5+I,J)
              37 9
                     CONTINUE
310
              381
                     CONTINUE
                     DO 469 I=GG,G
                     DO 390 J=1,6
                     BSUP(I,J)=BYOT(2*N5+1,J)
              399
                     CONTINUE
              400
315
                     CONTINUE
                     IF (NY.GT. U) GO TO 561
              C
              3
              CCC
                     CREATE C CONTROLLED AND C SUPPRESSED
326
              104
                     DO %20 I=1,N6
                     DO 410 J=1,N5
                     CCON(I,J) = CTOT(I,J)
325
              410
                     CONTI NUE
              420
                     CONTINUE
                     DO 440 I=1,N6
                     00 430 J=FF.F5
                     CCON(I,J)=0.0
330
              +30
                     CONTINUE
              441
                     CONTI NUE
              162
                     00 460 I=1.N6
                     DO 450 J=1, M
                     CSUP(I,J)=CTOT(I,N5+J)
335
              450
                     CONTINUE
              460
                     CONTINUE
                     DO 48 0 I=1, N6
                     DO 47 C J=GG,G
                     CSUP(I,J) = CTOT(I, 2*N5+J)
              470
340
                     CONTINUE
                     CONTINUE
              480
                                          76
```

```
Š
                     CREATE WEIGHTING MATRICES
345
              Ç
                     IF (N7 .GT. u) GO TO 541
                     DO 491 I=1,6
              165
                     00 490 J=1,6
                     R(I,J)=8.0
350
                     IF(I.EQ.J)R(I.J)=1.0
              497
                     CONTI NUE
              491
                     CONTINUE
                     IF (NE .GT.6) GO TO 541
                     83=1
355
                     00 493 I=1,6
                     nn 492 J=1, €
                     £1(I, J)=0.8
                     IF (I.En.J) R1 (I,J) = 1.0
               492
                     CONTINUE
36%
                     CONTINUE
               493
                     GO TO 562
                     DO 497 I=1,8
               5)1
                     DO 496 J=1,8
                      R1(I, J)=0.0
365
                      IF(I.E0.J)R1(I.J)=1.0
                      CONTINUE
               496
               497
                      CONTINUE
                      B3=1.
                      DO 528 I=1,F5
               532
370
                      00 510 J=1,F5
                      Q(I,J)=0.C
                      IF(I.EQ.J)Q(I,J) = 88
               510
                      CONTI NUE
               520
                      CONTINUE
 375
               522
                      DO 548 I=1,F5
                      DO 530 J=1,F5
                      ACONT (I,J) = CON(J,I)
               536
                      CONTT NUE
                      CONTINUE
 386
               549
                      DO 500 I=1,F5
               541
                      DO 55 A J=1,N6
                      CCONT (I, J) = CCON(J, 1)
               551
                      CONTI NUE
                      CONTINUE
               550
 385
                      IF (N7.GT.4) GO TO 625
                      00 588 I=1,E
               561
                      no 570 J=1,F5
                      BCONT (I, J) = BCON(J, I)
                570
                      CONTI NUE
 39u
                787
                      CONTINUE
                      PRINT 4, "GO"
                      IF (NY .GT. U) GO TO 562
                      00 591 I=1,6
                      DO 500 J=1,6
 395
                      RR(I, J)=L.û
                      CONTINUE
                500
                       CONTINUE
                671
                       DO 610 I=1,6
                                            77
```

```
493
                     RR(I,I)=-1./R(I,I)
              510
                     CONTINUE
                     00 512 I=1,6
                     99 511 J=1,6
                     RRR(I,J) = -kf(I,J)
4 05
              511
                     CONTINUE
              512
                     CONTINUE
                     IF (N6.GT.6) GO TO 619
                     DO 514 I=1,6
                     DO 513 J=1.6
410
                     RR1(I.J)=0.0
              513
                     CONTINUE
              614
                     CONTINUE
                     00 515 I=1,6
                     RR1(J,I) = -1./R(I,I)
415
              515
                     CONTINUE
                     00 618 I=1,E
                     00 617 J=1,6
                     RRR1(I,J) = -FR1(I,J)
              517
                     CONTINUE
                     CONTINUE
426
              518
                     GO TO 525
                     DO 521 I=1,8
              619
                     DO 527 J=1,8
                     RR1(I,J)=0.0
425
              523
                     CONTINUE
              621
                     CONTI NUE
                     DO 622 I=1,8
                     RR1(I,I) = -1 \cdot /R1(I,I)
              522
                     CONTINUE
4311
                     DO 624 I=1,8
                     DO 623 J=1,8
                     RRR1(I,J) = -RR1(I,J)
              523
                     CONTINUE
                     CONTI NUE
              624
435
                     SOLTE RESPECTIVE RICATTI EQUATIONS
444
              525
                     L1=F5
                     MO=N6
                     NO=N6
                     IA=16
                     19=5
                     IC=16
445
                     CALL VMULFF(CCONT, RRR1, L1, MO, NO, IA, IB, RU, 1C, IER)
                     NO=F5
                     CALL VMULFF(RU, CCON, L1, MO, N), IA, IB, SS, IC, IER)
                     IF (N7.GT.U) GO TO 637
                     00 528 I=1,F5
450
              525
                     00 627 J=1,F5
                     ACN1(I,J) = ACON(I,J)
                     ACN2(I,J)=ACONT(I,J)
              527
                     CONTI NUE
              528
                     CONTINUE
455
              552
                     DO 530 I=1,F5
                                           78
```

```
DO 529 J=1,6
                       BCN1(I,J)=BCON(I,J)
                       BCN2(J,I)=BCONT(J,I)
 4 65
                329
                       CONTINUE
                630
                       CONTI NUE
                       DO 632 I=1,G
                       DO 631 J=1,6
                       BSP1(I,J)=BSUP(I,J)
 465
                       IF(N7.GT.0)BSP1(1,J)=BSP+(I,J)
                531
                       CONTI NUE
                632
                       CONTI NUE
                       IF(NY.GT.L)GO TO 563
                       DO 634 I=1,F5
 476
                       00 533 J=1,NE
                       CCM1(I,J)=CCONT(I,J)
                       CCN2(J,I) = CCON(J,I)
                533
                       CONTINUE
                634
                       CONTI NUE
 475
                       DO 536 I=1,N6
                       D7 635 J=1,G
                      CSP1(I,J)=CSUP(I,J)
                335
                      CONTINUE
                      CONTINUE
                535
480
                537
                      CALL MRIC (FE, ACN2, SS, Q, P, CX, TOL, IER)
                      L1=N6
                      MO=N6
                      NO=F5
                      IA=8
485
                      19=8
                      IC=8
                      CALL VMULFF(RR1,CCN2,L1,M0,N0,IA,I3,RX,IC,IER)
                      M0=F5
                      IR=16
490
                      CALL VMULFF(RX,P,L1,M0,N0,IA,IB,OKFRN,IC,IEP)
                      DO 550 I=1.F5
                      DO 546 J=1,N6
                      OK(I, J) = -OKTRN(J, I)
               543
                      CONTI NUE
495
                      CONTINUE
               55 n
                      IF (NZ .GT . U) GO TO 671
               551
                      DO 578 I=1,F5
                      00 660 J=1,F5
                      FO(I, J)=0.0
500
                      IF(I \cdot EQ \cdot J) FO(I \cdot J) = 1 \cdot u
               553
                      CONTINUE
               570
                      CONTINUE
               363
                      L1=F5
                      M0=6
565
                      NO=5
                      I4=16
                      I9=6
                      IC=15
                      CALL VMULFF(BCON, RRR, L1, MO, NO, IA, I3, RV, IC, IER)
51ü
                      NO=F5
                     CALL VMULFF(RV, BCONT, L1, MO, NO, IA, IB, SO, IC, IER)
                      CALL MRIC (F5, ACN1, S0, F0, S, ULX, TOL, IER)
                     L1=6
                                            79
```

```
PROGRAM TETRA
```

```
M0=5
                      TA=6
515
                      IB=5
                      IC=5
                      NO=5
                      CALL VMULFF(RR, BCN2, L1, MO, NO, IA, IB, RY, IC, IER)
                      M0=F5
520
                      19=16
                      CALL VMULFF(RY,S,L1,MO,NU,IA,IB,30,IC,IER)
               571
                      L1=F5
                      40=5
                      NO=F5
5 25
                      IA=16
                      IB=6
                      IC=16
                      CALL VMULFF(BCN1,GO,L1,MO,NO,IA,I3,UC,IC,IER)
530
                      MO=N6
                      IB=9
                      IA=16
                      CALL VMULFF (OK, CCN2, L1, MO, N), IA, I3, C3, IC, IER)
                      DO 592 I=1,F5
                      00 691 J=1,F5
5 35
                      CCT(I,J)=CC(J,I)
               591
                      CONTI NUE
               592
                      CONTI NUE
                      DO 694 1=FF,F5
                      00 593 J=1,N5
540
                      CN (I, J) = CCT (I-N5, J+N5)
               593
                      CONTI NUE
               594
                      CONTI NUE
                      DO 596 I=FF,F5
                      DO 695 J=FF,F5
545
                      CN(I, J) = CCT(I-N5, J-N5)
               695
                      CONTI NUE
                      CONTINUE
               696
                      DO 598 I=1,N5
55r
                      00 597 J=1,F5
                      CN(I, J)=4.4
               597
                      CON', I NUE
               598
                      CONTI NUE
                      DO 730 I=1,F5
555
                      DO 728 J=1,F5
                      C\cap (T,J)=CN(I,J)
                      CC(I, J) = ACN1(I, J) - CN(I, J)
                      UL(I, J) = ACN1(I, J) + UC(I, J)
                      COC(T,J)=ULX(I,J)-CX(I,J)+ACN2(I,J)
560
               720
                      CONTINUE
               730
                      CONTINUE
                      L1=F5
                      MO=N6
                      NO=G
565
                      IA=16
                      IR=5
                      IC=15
                      CALL VMULFF (OK, CSP1, L1, MO, N), IA, I3, OSPILL, IC, IER)
                      L1=G
570
                                             80
```

```
40=5
                     NO=F5
                     I4=16
                     I 9=5
575
                     IC=16
                     CALL VMULFF(BSP1, GO, L1, MO, NO, IA, 13, CSPILL, IC, IER)
              0000
                     CREATE TOTAL SYSTEM MATRIX
585
              Э
                     00 750 I=1,F5
                     DO 740 J=1,F5
                     79(I, J) = ULX(I, J)
585
              749
                     CONTI NUE
              750
                     CONTI NUE
                     DO 770 I=1,F5
                     DO 760 J=F1,F2
                     79(I, J)=UC(I,J-F5)
590
              750
                     CONTINUE
              778
                     CONTINUE
                     DO 793 I=1,F5
                     DO 78 9 J=F3,F4
                     79 (I, J) = 5.6
595
              780
                     CONTINUE
              790
                     CONTINUE
                     DO 810 I=F1,F2
                     00 800 J=1,F5
                     79 (I, J)=0.0
              310
                     CONTINUE
630
              917
                     CONTINUE
                     DO 830 I=F1,F2
                     DO 820 J=F1,F2
                     79(I, J) = CX(I-F5, J-F5)
              327
000
                     CONTI NUE
              330
                     CONTINUE
                     DO 850 I=F1,F2
                     DO 840 J=F3,F4
                     73(7, J) = OSPILL(I-F5, J-F2)
610
              340
                     CONTI NUE
                     CONTINUE
              350
                     DO 870 I=F3,F4
                     DO 860 J=1.F5
                     79(I,J)=CSPILL(I-F2,J)
              850
u 19
                     CONTINUE
              87 C
                     CONTINUE
                     00 890 I=F3,F4
                     DO 880 J=F1,F2
                     79(I, J)=CSPILL(I-F2, J-F5)
623
              333
                     CONTINUE
              391
                     CONTINUE
                     DO 910 I=F3,F4
                     DO 300 J=F3,F4
                     79(I, J) = ASUP(I-F2, J-F2)
625
              300
                     CONTINUE
              310
                     CONTI NUE
                     DO 312 I=1,26
                                            81
```

```
DO 911 J=1,20
                      78(I, J) = 29(I, J)
630
               311
                      CONTI NUE
               912
                      CONTI NUE
               398
                      IJ08=0
                      NN=2" F5+G
                      IA=20
t 3°.
                      I7=20
               C
                      EIGEN VALUE ANALYSIS
643
                      CALL EIGRF(79, NN, IA, IJOB, W, 7C, I7, NC, IER)
                      DO 914 I=1.20
                      70 913 J=1,28
                      79(I,J)=28(I,J)
645
               913
                      CONTI NUE
               314
                      CONTINUE
                      PRINT +,"
                      PRINT +, "0=", BB
                      PRINT *,"
650
                      PRINT +, "THE SYSTEM EIGENVALUES"
                      PRINT *,"
                      PRINT+,"
                      PRINT +,"
                                                             ". "EIGENVALUE"
                      PRINT*,"
655
                      NN=NN-1
                      DO 330 I=1, NN, 2 PRINT*, ** **
                      PRINT *,"
                                                            (I)W."
                      J=I+1
660
                      PRINT *."
                                                            ", 4(J)
               330
                      CONTINUE
                      TA=16
                      17=8
                      CALL EIGRF(ULX, F5, IA, IJOB, WA, 703, I7, WK, IER)
665
                      PRINT *,"
                      PRINT +,"
                      PRINT +, "THE EIGENVALUES"
                      PRINT +, "OF A+BS","
                                                             ". "EIGENVALUE"
                      PRINT +,"
670
                      F5=F5 -1
                      00 931 I=1,F5,2
                      PRINT *, "
                      PRINT*,"
                                                         ", WA(I)
                      J=1+1
675
                      PRINT ...
                                                         ", WH( J)
               931
                      CONTINUE
                      F5=F5 41
                      DO 933 I=1,F5
                      NO 932 J=1,F5
68ú
                      CY(I,J)=CX(I,J)
               332
                      CONTI NUE
               933
                      CONTINUE
                      CALL EIGRF (CX, F5, IA, IJOB, H1, 71, I7, HK1, IER)
                      DO 935 I=1,F5
```

```
DO 934 J=1,F5
€85
                      CX(I,J)=CY(I,J)
                      CONTI NUE
               934
               335
                      CONTI NUE
                      PRINT +,"
                      PRINT *,"
690
                      PRINT +, "THE EIGENVALUES"
PRINT +, "OF A-KC", "
                                                             ", "EIGENVALUE"
                      PRINT*,"
                      F5=F5 -1
                      DO 352 I=1,F5,2
695
                      PRINT*,"
                      PRINT *,"
                                                          ", W1(I)
                      J=I+1
                                                          ", W1(J)
                      PRINT +,"
                      CONTINUE
               952
700
                      F5=F5+1
                      CALL EIGRF (COC, F5, IA, IJOB, W2, Z2, 17, WK2, IER)
                      PRINT *," "
                       PRINT *,"
                      PRINT *, "THE EIGEN VALUES"
7 95
                                                              ", "EIGENVALUE"
                      PRINT *, "OF A+BG-KC", "
                      PRINT *, "
                       F5=F5 -1
                       no 955 I=1,F5,2
                       PRINT+,"
710
                       PRINT *,"
                                                       ", W2(I)
                       J=I+1
                                                      ", W2(J)
                       PRINT *,"
                       CONTI NUE
                355
                       F5=F5+1
7 15
                       DO 958 I=1.F5
                       DO 967 J=1,F5
                       ACNF(I,J) = ACN1(I,J)
               367
                       CONTI NUE
                358
                       CONTINUE
726
                       CALL EIGRF(ACN1, F5, IA, IJOB, H3, Z3, IZ, HK3, IEK)
                       00 379 I=2,F5
                       no 969 J=1,F5
                       ACN:(I,J) =ACN5(I,J)
7 25
                969
                       CONTINUE
                370
                       CONTI NUE
                       PRINT*,"
                       PRINT *,"
                       PRINT *, "THE EIGENVALUES"
                       PRINT*,"OF A
                                                       EIGENVALUE"
 736
                       PRINT "."
                       F5=F5 -1
                       00 956 I=1,F5,2
                       PRINT *,"
                                                       ",W3(I)
                       PRINT ","
 7 35
                       J=I+1
                       PRINT ...
                                                       ", W3(J)
                       CONTINUE
                356
                       F5=F5 +1
                ?
 740
```

83

```
INITIAL CONDITIONS
745
                      Y(1) = -. 061
                      Y(2) = .005
                      Y(3) = -.003
                      Y(4) = .01
                      Y(5)= .....1
751
                      Y (6) = .3ub
                     Y(7) = -.063
                      Y(8) = .01
                      Y(9) = .001
                      Y(13) =-.689
755
                      Y(11) =. 888
                      Y(12) =-.061
                      Y (13) =-.032
                      Y(14) = .062
                      Y(15) =. U3
760
                      Y(15) =-.02
                      Y(17) = .02
                      Y(18) =-.62
                      Y (19) =-. u 63
                      Y(20) = .004
765
                      INTEGRATE STATE EQUATIONS
770
                      TI=0.0
                      TOUT = .1
                      IFLAG=1
                      NEQN= 20
                      ABSER R=1.0E-03
775
                      RELERR=1.UE-63
                      JJ=1
                      CALL ODE(XDOT, NEQN, Y, TI, TQUT, RELERR, ABSERR, IFLAG, WORK, IWORK)
               1102
                      IF(TI.LT.TOUT)GO TO 1102
                      XX1(JJ)=Y(1)
780
                      (S)Y=(LU)SXX
                      XX3(JJ)=Y(9)
                      XX4(JJ)=Y(10)
                      XX5(JJ)=Y(11)
                      XX5(JJ)=Y(12)
785
                      XX7(JJ)=Y(13)
                      XXB(JJ)=Y(14)
                      JJ=JJ +1
                      TOUT = TOUT + . 1
                      IF(TI.LE.28.)GO TO 1102
791
               00000
                      GENERATE AND PLOT LINE OF SIGHT X AND Y
795
                      00 1103 I=1,201
                      T4(I)=(I-1)*.1
               1107
                      CONTI NUE
```

DO 11 04 I=1, 201

```
X1(I) = -.2470727 + XX1(I) + .3998955 + XX2(I)
                     x1(I) = x1(I) - .08783301 + xx3(I) + .05357944 + xx4(I)
8 99
                     X1(I) = X1(I) + . C2745586 + XX5(I) - . 026614C1 + XXE(I)
                     X1(I) =X1(I) -. C299 367 U + XX7 (I) +. DDU G1353225 * XX8(I)
                     X2(I) = .4278569 \times XX1(I) + .2309291 \times XX2(I)
                     X2(I) =X2(I) - . 65070142*XX3(I) + . 63577784*XX4(I)
805
                     X2(I) =X2(I) -.04757822+XX5(I) +.04605553+XX6(I)
                     X2(I)=X2(I)-.01730931+XX7(I)+.00000000001218161+XX8(T)
              110
                     CONTI NUE
                     CALL PLOT (6., 0., -3)
                     CALL SCALE(TM,8.,201,1)
                     CALL SCALE(X1,8.,201,1)
810
                     CALL AXIS(0.,C.,4HTIME,-4,8.,0.,14(202), M(203))
              1105
                     CALL AXIS(U., C., 4 HLOSX, 4, 8., 90., X1(202), X1(203))
                     CALL LINE (TM, X1, 201, 1, 5, 2)
                     CALL SYMBOL (4.,6.,0.21,13HLOSX VS. TIME,0.,13)
815
                     CALL PLOT (10.,0.,-3)
                     CALL SCALE (TM, 8., 201, 1)
                     CALL SCALE(X2,8.,201,1)
               1107
                     CALL AXIS(0.,0.,4HTIME,-4,8.,J., [4(202), [4(203))
                     CALL AXIS(C., C., 4HLOSY, 4,8.,90., X2(202), X2(203))
820
                     CALL LINE (TM, X2, 281, 1,5,2)
                     CALL SYMBOL (4.,6.,8.21,13HLOSY VS. TIME, 8.,13)
                     CALL PLOTE(N)
                     IF(M.LT.N7)GO TO 1131
                     IF (KK .GT. #) GO TO 1181
825
                     Q5=2. 0
                     Q5=.001
              357
                     DO 959 I=1, M
                     DO 958 J=1,12
                     PHIT1 (I, J) = 0.0
836
              358
                     CONTI NUE
              959
                     CONTINUE
                     DO 951 I=GG,G
                     DO 960 J=1,12
                     PHIT1 (I, J) = PHIT (I+F5, J)
              960
                     CONTINUE
8 35
              361
                     CONTINUE
              362
                     L1=6
                     MO = 1.2
                     NO=5
                     IA=16
846
                     I3=12
                     IC=15
                     CALL VMULFF(PHIT1,D,L1,MO,NO,IA,IB,BSP3,IC,IER)
                     DO 964 I=1,G
845
                     DO 963 J=1,6
                     8SP4(I,J) = 3SP3(I,J)
              963
                     CONTINUE
              354
                     CONTINUE
                     DO 966 I=1,G
851
                     DO 965 J=1,G
                     C(I,J)=8.0
                     IF(I.E0.J)C(I,J)=1.0
              365
                     CONTINUE
              956
                     CONTINUE
855
                     IA=16
                                           85
```

```
M0=3
                     NO=6
                     IC=15
                     N9=G
866
                     CHECK FOR ZERO SINGULAR VALUE
865
                     CALL LSVDF(BSP3, IA, MO, NO, C, IC, NB, S, HK, IER)
                     Q4=S(6)
                     IF(34.LT.05)GO TO 1075
                     Q5=Q6 -. 61
                     IF(96 .LT.-2.0)GO TO 1096
876
                     01=(4 .0+Q6++2.)++.5
                     D(7,3)=1./01
                     9(8,3)=1.7318/01
                     D(9,3) = Q6/Q1
                     GO TO 962
875
              137
                     PRINT*,"
                     PRINT+, "THE LEAST SINGULAR VALUE IS ", S(5)
                     PRINT+,"06 = ",Q6
              3
              C
                     APPLY TRANSFORMATION TECHNIQUE
886
                     DO 1076 J=1,6
                     TT(1, J) = BSP3(6, J)
              1376
885
                     CONTINUE
                     DO 1078 I=1,6
                     T(I,1)=TT(1,I)
              1978
                     CONTINUE
                     DO 1085 I=1,N5
890
                     00 10 79 J=1,12
                     PHIT2 (I,J)=0.0
              1973
                     CONTINUE
              138
                     CONTINUE
                     DO 10 82 I=FF,F5
895
                     DO 1081 J=1,12
                     PHIT2(I,J)=PHIT(I+M,J)
              1781
                     CONTI NUE
              1182
                     CONTI NUE
                     L1=F5
930
                     M0=12
                     NO=5
                     IA=16
                     13=12
                     IC=16
9115
                     CALL VMULFF (PHIT2, D, L1, MO, NO, IA, IB, BCON, IC, IER)
                     M0=5
                     N0=1
                     I3=6
                     CALL VMULFF (BCON, T, L1, MO, NO, IA, IB, 31, IC, IER)
910
                     L1=1
                     NO=6
                     I4=1
                                          86
```

```
IC=1
                     CALL VMULFF(TT,R,L1,M0,N0,IA,IB,RTL,IC,IER)
915
                     NO=1
                     CALL VMULFF(RT1,T,L1,M0,N0,IA,1B,RT,1C,1ER)
                     RTI(1,1)=1./RT(1,1)
                     L1=F5
                     40=1
920
                     IA=16
                     I 3=1
                     IC=16
                     CALL VMULFF (BT, RTI, L1, MO, NO, IA, IB, V1, IC, IER)
                     DO 1983 J=1,F5
925
                     BTT(1,J) = BT(J,1)
              1387
                     CONTT NUE
                     L1=F5
                     M0=1
                     NO=F5
93%
                     IA=15
                     I9=1
                     IC=15
                     CALL VMULFF(V1,BTT,L1,MO,NO,IA,IB,VV,IC,IER)
                     DO 1086 I=1,F5
935
                     00 10 85 J=1,F5
                     00(I, J)=0.0
                     IF(I.E0.J)QQ(I.J)=1000.0
              108"
                     CONTINUE
              198r
                     CONTINUE
949
                     CALL MRIC (F5, ACN1, VV, QQ, S1, JLX1, TOL, IER)
                     L1=1
                     M0=1
                     N0=F5
                     IA=1
945
                     19=1
                     IC=1
                     CALL VMULFF(RTI, BTT, L1, MO, NO, IA, I3, 301, IC, IER)
                     M0=F5
                     I3=16
950
                     CALL VMULFF(GO1,S1,L1,MO,NO,IA,IB,GO2,IC,IER)
                     L1=6
                     M0=1
                     NO=F5
                     IA=6
955
                     IR=1
                     IC=5
                     CALL VMULFF(T,GO2,L1,MO,NO,IA,IB,3),IC,IER)
                     DO 1088 I=1,G
                     DO 10 87 J=1,6
960
                     BSP1(I,J) = BSP4(I,J)
              1187
                     CONTI NUE
              1196
                     CONTINUE
                     00 1090 I=1,F5
                     00 10 89 J=1,6
965
                     9CN1(I,J) = BCON(I,J)
              1189
                     CONTINUE
              199°
                     CONTI NUE
                     DO 1092 I=1,F5
                     DO 18 91 J=1,F5
```


971		ULX(I,J)=ULX1(I,J)		
	1791	CONTINUE		
	1099	CONTINUE		
		KK=KK 41		
		00 1200 I=7,9		
97 5		D1(3, I) = D(I, 3)		
	120	CONTINUE		
		N7=1		
		GO TO 118		
	1196	PRINT*, "SINGULARITY	PROGRAM	FAILED*
980	1101	STOP		
		БИЭ		

```
SUBROUTINE MRIC(N,A,S,Q,X,7,TOL,IER)
 1
                    OTMENSION A(16), S(26), Q(16), X(15), 7(16)
                    COMMUN/MAIN1/NDIM, NDIM1, F(15)
                    COMMON/MAIN2/TR(16)
 5
                    COMMON/INOUT/NOT
                    ADV=TOL+1.E-UB
                    MIGH *N=NN
                    N41=N-1
                    IND=1
10
                    COUNT = 0.
                    IF (IER.EQ.1) COUNT=99.
                    IF(IER.EQ.1) MR=N
                    IF (IER. EQ. 1) GO TO 100
                    T1=-1.
             300
                    CONTINUE
15.
                    IER=U
                    COUNT = COUNT +1.
                    DO 15 I=1,N
                    DO 15 J=I, NN, NDIM
26
             15
                    X(J) = -S(J)
                    CALL INTEG(N,A,X,Z,T1)
                    CALL FACTOR1(N,Z,X,MR)
                    IER=1
                    IF (MR.LT.U)GO TO 200
25
                    IER=0
                    CALL GMINV(N,N,X,Z,MR,U)
                    CALL TFR(TR, Z, N, N, 1, 2)
                    CALL MMUL(Z,TR,N,N,N,X)
                    DO 18 II=1, NN, NDIM1
36
                    1=11
                    NO 17 J=II, NN, NDIM
                    x(J) = (x(J) + x(I)) / 2.
                    X(I) = X(J)
             17
                    I = I + 1
35
             18
                    CONTINUE
             101
                    CONTINUE
                    DO 16 I=1,N
                    TR(I) =-1.0
             16
                    TOL1= TOL/16.
40
                    MAXIT =40
                    DO 40 IT=1, hAXIT
                    IF (!ER.EQ.1)GO TO 10;
                    CALL MMUL(S,X,N,N,N,F)
                    CALL MMUL(X,F,N,N,N,Z)
                    DO 20 I=1,NN,NDIM
45
                    II=I+NM1
                    00 20 J=I,II
                    X(J) = A(J) - F(J)
             21
                    7(J) = 7(J) + Q(J)
50
             111
                    CONTI NUE
                    IER=0
                    CALL MLINEQ(N,X,7,X,TOL1, IER)
                    IF(IER.NE.U)GO TO 200
                    L = 0
                    C1=0.0
55
                    II=1
                    DO 25 I=1,N
```

```
FTN 4.8+518
```

```
IF(ABS(X(II)-TR(I)).LT.(ADV+TOL*X(II)))L=L+1
                    TR(I) = X(II)
                    II=II +NDIM1
66
             25
                    C1=C1 +TR(I)
                    IF (ABS(C1).GT.1.E+20)GO TO 50
                    IF (L. NE.N) GO TO 49
                    CALL GMINV(N,N,Z,F,MR,0)
65
                    CALL MMUL(S,X,N,N,N,Z)
                    DO 30 I=1,NN;NDIM
                    II=I+NM1
                    DO 36 J=I,II
             30
                    Z(J) = A(J) - Z(J)
                    IF (NR .NE.N) WRITE (NOT, 35) MR
70
             35
                    FORMA 1(26HDRICCATI SOLN IS PSD--RANKI3)
                    GO TO 65
                    CONTI NUE
             49
                    WRITE (NOT, 45) MAXIT
75
             45
                    FORMAT (26HERICCATI NON-CONVERGENT IN12, 11H ITERATIONS)
                    GO TO 63
                    WRITE (NOT,55) II,T1
             5 (1
             55
                    FORMAT(29HBRICCATI BLOW UP AT ITERATIONI2, 12H INITIAL T=F13.5)
             61
                    IER=1
             55
                    RETURN
80
             230
                    IF (IND.EQ.2) GO TO 250
                    IF (COUNT.GE.10.) RETURN
                    T1=T1/(2. ** COUNT)
                    IND=2
85
                    GO TO 300
             250
                    T1=T1*(2.**COUNT)
                    IND=1
                    END
```

FUNCTION XNORM 74/74 OPT=1

FTN 4.8+518

```
1
                    FUNCTION XNORM(N, A)
                    DIMENSION A (16)
                    COMMON/MAIN1/NDIM, NDIM1
                    NN=YF NDIM
 5
                    01=0.
                    TR=A(1)
                    IF (N. EQ.1) GO TO 20
                    I = 2
                    DO 18 II=NDIH1, NN, NOIM
16
                    J = II
                    DO 5 JJ=I,II,NDIM
                    C1=C1 +ABS (A (J) + A (JJ) )
             5
                    J=J+1
                    TR=TR+A(J)
15
             13
                    I=I+1
                    TR=TR/FLOAT(N)
                    00 15 II=1, NN, NOIM1
             15
                    C1=C1+(A(II)-TR)++2
             20
                    XNORM =ABS(TR)+SQRT(C1)
20
                    RETURN
                    END
                                            90
```

```
1
                    SUBROUTINE MLINEQ(N,A,C,X,TOL,IER)
                    NIMENSION A (16), C (16), X (16)
                    COMMON/MAIN1/NDIM, NDIM1
                    COMMON/MAIN3/F(16)
                    A7V=T 0L*1.E-06
 •7
                    DT=.5
                    DT1=0 .
                    NN=N* NDIM
                    DO 5 II=1,NN,NDIM1
             5
                    DT1=DT1.-A(II)
10
                    DT1=071/N
                    IF (DT 1. GT .4. u) DT = DT + 4.0/DT1
                    II=1
                    00 20 I=1,N
                    DO 15 JJ=I,NN,NDIM
15
             15
                    (LL)ATTO= (LL)X
                    X(II) = X(II) - .5
              23
                     II=II +NDIM1
                    CALL GMINV(N,N,X,F,HR,0)
20
                     IER=4
                    IF (MR .NE.N) RETURN
                    CALL MMUL(C,F,N,N,N,X)
                    I = 1
                    DO 46 II=1, NN, NDIM
25
                     J=II
                    IF (I. EQ. 1) GO TO 30
                    DO 25 JJ=I,II,NDIM
                    C(J) = C(JJ)
             25
                     J=J+1
                    ID=J
33
              33
                    DO 35 JJ=II,NN,NDIM
                    C(J) = CT + DOT(N, F(II), X(JJ))
              35
                     J=J+1
                    F(ID) = F(ID) + 1 \cdot 0
35
              47
                    I=I+1
                    DO 90 IT=1,20
                    NEZ=0
                    CALL MMUL(C,F,N,N,N,X)
                    I=1
40
                    II=1
                     J=1
                    GO TO 76
             50
                    J=I'.
                    DO 55 JJ=1, II, NDIM
45
                    C(J) = C(JJ)
             55
                     J=J+1
                    ID=J
             79
                    DT1=C(J)
                    NO 75 JJ=II, NN, NDIM
5ť
                    C(J) = C(J) + DOT(N, F(II), X(JJ))
             75
                     J= J+1
                     J=J-1
                    DO 80 JJ=II,J
                    X(JJ) =F(JJ)
              81
                    IF (A9S(C(ID)).GT.1.E+15J)GO TO 95
55
                    IF (ABS(C(ID)-DT1).LT. (ADV+TOL*ABS(C(ID)))) NE7=NE7+1
                     I=I+1
                                             91
```

```
II=II +NDIM
                    IF (I.LE.N) GO TO 60
                    IF(NE7.EQ.N)GO TO 150
60
                    CALL MMUL(X,X,N,N,N,F)
             30
                    CONTINUE
             35
                    IER=1
                    RETURN
                    CONTINUE
65
             150
                    NM1=N-1
                    DO 155 I=1, NN, NOIM
                    II=I+NM1
                    DO 155 JJ=I,II
70
             155
                    X(JJ) = C(JJ)
                    IER=0
                    RETURN
                    END
                                                                       FTN 4.8+518
  SUBROUTINE FACTOR1
                                   CPT=1
                          74/74
 1
                    SUBROUTINE FACTOR1(N,A,S,MR)
                    DIMENSION A(16), S(16)
                    COMMON/MAIN1/NDIM, NDIM1
                    COMMON/INOUT/KOUT
5
                    TOL=1 .E-66
                    MQ=0
                    MICH "N=NN
                    TOL 1 = 0.
                    00 1 I=1,NN,NDIM1
16
                    R=ABS (A(I))
                    IF (R. GT. TOL1) TOL1=R
             1
                    TOL1= TOL1 + 1 . E-12
                    II=1
                    00 50 I=1,N
15
                    I41=I-1
                    DO 5 JJ=I,NN,NDIM
             5
                    S(JJ) =0.
                    ID=II +IM1
                    R=A(ID)-DOT(IM1,S(II),S(II))
                    IF (ABS(R).LT.(TOL+A(ID)+TOL1))GO TO 50
20
                    IF(3) 15,50,28
             15
                    MR=-1
                    WRITE (KOUT, 1, 1, 1, 0)
                    FORMAT(37HOTRIED TO FACTOR AN INDEFINITE MATRIX)
             187
25
                    RETURN
                    S(ID) = SQRT(R)
             50
                    MR=4R+1
                    IF (I. EQ.N) RETURN
                    L=II+NDIM
36
                    DO 25 JJ=L, NN, NDIM
```

S(IJ) = (A(IJ) - DOT(IM1, S(II), S(JJ))) / S(ID)

IJ=JJ+IM1

END

IT=II+NDIM RETURN

25

50

35

```
SUBROUTINE INTEG(N,A,C,S,T)
1
                    DIMENSION A(16), C(16), S(16)
                    COMMON/MAIN1/NDIM, NDIM1, X (15)
                    COMMON/MAIN2/COEF (16)
                    NN=N+ NDIM
5
                    NH1=N-1
                    I NO=1
                    ANORM = XNORM (N,A)
                    DT=T
                    IF(ANORM#ABS(DT).LE.0.5)GO TO 10
             5
10
                    DT=DT/2.
                    IND=IND+1
                    GO TO 5
                    00 15 I=1, NN, NDIM
             10
                    J=I+NM1
15
                    no 15 JJ=I,J
                    S(JJ) =DT*C(JJ)
             15
                    T1=0T **2/2.
                    nn 25 IT=3,15
                    CALL MMUL (A,C,N,N,N,X)
20
                    00 20 I=1,N
                    II=(I-1) *NDIM
                    MIDN, NN, I=U 05 00
                    II=II+1
                    C(JJ) = (X(JJ) + X(II)) + T1
25
                    S(JJ) = S(JJ) + C(JJ)
              20
                     T1=DT/FLOAT(IT)
              25
                     IF(IND.E0.0)G0 TO 100
                     COEF (11)=1.0
                     DO 30 I=1,10
34
                     II=11-I
                     COEF(II)=DT+COEF(II+1)/FLOAF(1)
              30
                     II=1
                     DO 40 I=1,NN,NDIM
                     J=I+NH1
35
                     DO 35 JJ=I,J
                     X(JJ) = A(JJ) * COEF(1)
              35
                     X(II) = X(II) + COEF(2)
                     II=II +NDIM1
              43
                     DO 55 L=3,11
46
                     CALL MMUL (A, X, N, N, N, C)
                     II=1
                     T1=00 EF(L)
                     I=1,NN,NDIM وز DO
                     J=I+NM1
 45
                     00 5% JJ=I,J
                     X(JJ) = C(JJ)
              50
                     II=II +NDIM1
              55
                     L = 0
                     L=L+1
              50
 50
                     CALL MMUL(X,S,N,N,N,C)
                     II=1
                     DO 90 I=1,N
                     J=II
                     IF(I. EQ.1)GO TO 75
 55
                     DO 76 JJ=I,II,NDIM
                     S(JJ) =S(J)
```

```
73
                    J=.J+1
             75
                    00 85 JJ=I,N
                    KK=JJ
bti
                    DO 80 K=I, NN, NDIM
                    S(J) = S(J) + C(K) + X(KK)
                    KK=KK+NDIM
             91
             95
                     MIGN+L=L
                    DO 87 JJ=1, NN, NDIM
65
              37
                    C(JJ) = X(JJ)
                    II=II+NDIM
             3.3
                    IF(L.EQ.IND)GO TO 100
                    CALL MHUL (C,C,N,N,N,X)
                    GO TO 60
7:
              199
                    CONTINUE
                    RETURN
                    END
```

SUBROUTINE MMUL

74/74 OPT=1

FTN 4.8+518

SUBROUTINE MMUL(X,Y,N1,N2,N3,7) 1 DTMENSION X (16), Y (16), Z (16) COMMON/MAIN1/NDIM NEND3 = NDI M# N3 NENDZ = NDI M* NZ E DO 1 I=1, N1 DO 1 J=I, NEND3, NDIM 7(J)=3.8 KK=J-I DO 1 K=I, NENO2, NDIM 10 KK=KK +1 7(J) = 7(J) + X(K) + Y(KK)1 RETURN END

FUNCTION DOT

74/74 OPT=1

FTN 4.8+518

1 FUNCTION DOT(NR,A,E)
DIMENSION A(16),B(16)
DOT=0.
DO 1 I=1,NR

1 DOT = TOT+A(I)*B(I)

RETURN END

```
SUBROUTINE TER(X,A,N,M,K,I)
 1
                    DIMENSION X(16), A(16)
                    COMMON/MAIN1/NDIM
                    JS=(K-1)*NDIM*M
5
                    JEND= M*NDIM
                    50 TO (10,30,50,70,90),I
             13
                    DO 20 II=1,N
                    no 20 JJ=II, JEND, NDIM
             21
                    (2U+UU)A=(UU+US)
10
                    RETURN
                    DO 49 II=1,N
             37
                    KK=(II-1)*NDIM
                    00 40 JJ=1.M
                    LL=(JJ-1) #NDIM+II
15
             41
                    X(KK+JJ)=A(LL+JS)
                    RETURN
             50
                    KK=N
                    DO 60 II=1, JEND, NOIM
                    LL=II +N-1
20
                    no 50 JJ=II,LL
                    KK=KK+1
                    X(KK) = A(JJ+JS)
             5 3
                    RETURN
             7]
                    KK=H+N+1
                    DO 80 II=1.M
ל2
                    LL=(M-II) *NDIM+1
                    00 80 IJ=1,N
                    KK=KK-1
                    JJ=LL+N-IJ
30
             3 7
                    A(JJ+JS)=X(KK)
                    RETURN
             9 O
                    SAVE= A(1)
                    K=N
                    DO 31 I=1,N
35
                    L=N
                    00 92 J=1,N
                    IK=(K-1)*NUIM+K
                    X(IK) = 0.
                    IF(L \cdot EQ \cdot K) \times (1K) = A(L)
40
             32
                    L=L-1
             91
                    K=K-1
                    X(1) = SAVE
                    RETURN
                    END
```

```
SUBROUTINE GMINV (NR, NC, A, U, MR, MT)
1
                    DIMENSION A (18), U (16)
                    COMMON/MAIN1/NDIM, NDIM1, S(15)
                    COMMON/INOUT/NOT
5
                    TOL=1 .E-12
                    MR=NC
                    NPM1 = NR-1
                    TOL1=1.E-20
                    JJ=1
                    00 160 J=1,NC
1:
                    FAC=DOT(NR,A(JJ),A(JJ))
                    JM1=J-1
                    JRM=JJ+NRMi
                    TMC+CC=POC
15
                    DO 29 I=JJ, JCM
             21
                    U(I) = 0.
                    U(JCM)=1.3
                    IF(J. EQ.1)GO TO 54
                    KK=1
20
                    DO 35 K=1,JM1
                    IF (S(K).EQ.1.6) GO TO 38
                    TEMP= -DOT (NR, A (JJ), A (KK))
                    GALL VADD (K, TEMP, U(JJ), U(KK))
             30
                    KK=KK +NDI M
                    00 50 L=1,2
25
                    KK=1
                    DO 53 K=1,JM1
                    IF(3(K).EQ.U.)GO TO 50
                    TEMP=-NOT(NR, A(JJ), A(KK))
                    CALL VADD (NR, TEMP, A(JJ), A(KK))
30
                    CALL VADD(K, TEMP, U(JJ), U(KK))
             51
                    KK=KK +NDIM
                    TOL1=TOL*FAC
                    FAC=DOT(NR,A(JJ),A(JJ))
35
             54
                    IF(FAC.GT.TOL1)GO TO 75
                    DO 55 I=JJ, JRM
             55
                    A(I) = 0.
                    S(J) = 3.
                    KK=1
                    00 55 K=1,JM1
40
                    IF(S(K).EQ.0.)GO TO 65
                    TEMP= -DOT (K, U(KK), U(JJ))
                    CALL VADD(NR, TEMP, A(JJ), A(K())
             55
                    KK=KK +NDI M
                    FAC-DOT(J,U(JJ),U(JJ/)
45
                    MR=MR-1
                    GO TO 75
             77
                    S(J) = 1.0
                    KK=1
56
                    DO 72 K=1,JM1
                    IF(S(K).EQ.1)GO TO 72
                    TEMP=-DOT(NR,A(JJ),A(KK))
                    CALL VADD(K, TEMP, U(JJ), U(KK))
             72
                    KK=KK+NDIH
55
             75
                    FAC=1 ./SORT (FAC)
                    DO 80 I=JJ, JRM
             37
                    A(I) = A(I) + FAC
                                          96
```

```
DO 85 I=JJ,JCM
                    U(I) = U(I) *FAC
             45
60
             100
                    MIGN+ LL=LL
                    IF (MR.EQ.NR.OR.MR.EQ.NC) GO TO 123
                    IF (MT .NE. G) WRITE (NOT, 118) NR, NC, MR
                    FORMAT(I3,1HX,I2,8H M RANK,I2)
             110
                    NEND= NC*NDIM
             120
6F
                    JJ=1
                    DO 135 J=1,NC
                    DO 125 I=1,NR
                    II=I-J
                    S(I)=0.
                    DO 125 KK=JJ, NEND, NOIM
70
             125
                    S(I) = S(I) + A(II + KK) + U(KK)
                    II=J
                    00 130 I=1,NR
                    U(II) =S(I)
75
             130
                    II=II+NDIM
                    JJ=JJ 4NDI M1
             135
                    RETURN
                    END
  SUPROUTINE VAID
                           74/74
                                    OPT=1
                                                                         FTN 4.8+518
                    SUBROUTINE VADD(N,C1,A,B)
 1
                    DIMENSION A (16), B (16)
                    DO 1 T=1,N
                    A(I) = A(I) + C1 + B(I)
             1
 5
                    RETURN
                    END
  SUBROUTINE XOOT
                           74/74
                                    0PT=1
                                                                         FTN 4.8+518
 1
                    SUBROUTINE XOOT(TI,Y,YP)
                    DIMENSION Y(20), YP(20)
                    COMMON Z9(26,26)
                    L1=23
 5
                    M0=20
                    NO=1
                    I 1 = 20
                    I3=20
                    IC=23
10
                    CALL VMULFF(79, Y, L1, H0, N0, 14, 18, Y2, IC, IER)
                    RETURN
                    END
```

Vita

Alan Michael Janiszewski was born on January 24, 1951 in South Milwaukee, Wisconsin. He graduated from high school in South Milwaukee in 1969. After two years at the University of Wisconsin, he enlisted in the Air Force. During technical training he was selected to attend the United States Air Force Academy. He graduated with a regular commission and the degree of Bachelor of Science in Aeronautical Engineering in 1976. He was assigned to Warner Robins Air Logistics Center, Robins Air Force Base, Georgia. He served there as an Aeronautical Engineering Supervisor and a Programs and Plans Logistics Officer until his assignment to the AFIT School of Engineering in June 1979.

Permanent Address: 1601 Monroe Ave South Milwaukee

Wisconsin

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
AFIT/GA/AA/80D-2	D- AC94766			
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED		
MODERN OPTIMAL CONTROL MET	-	MS Thesis		
APPLIED IN ACTIVE CONTROL OF A TETRAHEDRON		6. PERFORMING ORG. REPORT NUMBER		
7. Author(s) Alan M. Janiszewski Capt		8. CONTRACT OR GRANT NUMBER(s)		
9. PERFORMING ORGANIZATION NAME AND ADDRES Air Force Institute of Tec AFIT-EN Wright-Patterson AFB, Ohio	hnology	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
		December 1980		
		13. NUMBER OF PAGES		
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		15. SECURITY CLASS. (of this report)		
		Unclassified		
		15a. DECLASSIFICATION DOWNGRADING SCHEDULE		
Approved for public releas	e; distribution	n unlimited		
Approved for public releas				
17. DISTRIBUTION STATEMENT (of the abstract entere	ed in Block 20, if different fro	m Report)		
17. DISTRIBUTION STATEMENT (of the abstract enters 18. SUPPLEMENTARY NOTES Approved f Fredric C. L	or public relea	ase; IAW AFR 190-17		
17. DISTRIBUTION STATEMENT (of the abstract entered) 18. SUPPLEMENTARY NOTES Approved f Fredric C. L Director o	or public relea	ase; IAW AFR 190-17		
16. SUPPLEMENTARY NOTES Approved f Fredric C. L Director o A.F.I.T.	or public releaynch, Major, USAF	ase; IAW AFR 190-17		
18. SUPPLEMENTARY NOTES Approved f Fredric C. L Director o A.F.I.T. Director o	or public releaselynch, Major, USAF	ase; IAW AFR 190-17		
18. SUPPLEMENTARY NOTES Approved f Fredric C. L Director o A.F.I.T. Director o Rey Words (Continue on reverse side if necessary Linear system	or public releaselynch, Major, USAF	ase; IAW AFR 190-17		
18. SUPPLEMENTARY NOTES Approved f Fredric C. L Director o A.F.I.T. Director o NEY WORDS (Continue on reverse side if necessary Linear system Feedback control	or public releasing to the public Affair of the pub	ase; IAW AFR 190-17		
18. SUPPLEMENTARY NOTES Approved f Fredric C. L Director o A.F.I.T. Director o Rey Words (Continue on reverse side if necessary Linear system	or public releasing to the public Affair of the pub	ase; IAW AFR 190-17		
18. SUPPLEMENTARY NOTES Approved f Fredric C. L Director o A.F.I.T. Director o A.F.I.T. Linear system Feedback control Singular value decompositi Transformation matrix	or public releasion, Major, USAF f Public Affair	ase; IAW AFR 190-17		
18. SUPPLEMENTARY NOTES Approved for Fredric C. L. Director of A.F.I.T. 19. KEY WORDS (Continue on reverse side if necessary Linear system Feedback control Singular value decompositi Transformation matrix	or public releaselynch, Major, USAF f Public Affairs f Information and identify by block number, and identify by block number, be four unit makes bending). NAS approximation, as for the resu	ase; IAW AFR 190-17 ase; IAW		

tors are given a prescribed line of operation. Pointing accuracy at the fourth mass is used as a figure of merit in determining the effectiveness of the controller. A prescribed bandwidth for line of sight error at 20 seconds is set as a goal for successful control.

The controller is developed using linear optimal techniques which produce feedback gains proportional to the state. state is represented as modal amplitudes and velocities as determined by the sensors. The four higher frequencies modes are truncated to signify a simplifying order reduction step. estimation is incorporated due to the non-availability of modal amplitudes and velocities. The feedback gains are established via steady state optimal regulator theory; this involves minimization of related quadratic performance indices. Control is applied with point force actuators. System response is examined in light of the effects of observation spillover and control spillover onto a specified number of suppressed modes. A comparison is obtained by complete elimination of the spillover effect. Using single ar value decomposition, the spillover is first eliminated through judicious reorientation of one sensor/ actuator pair. An attempt to control two modes and suppress six demonstrates the advantages of spillover elimination, but fails to satisfy the specified bandwidth for error.

Sensors are added to the model at the fourth mass and observation spillover is again eliminated. Reorientation of the initial sensor/actuator pairs is no longer applied. Line of sight response was improved over a case without sensor additions but line of sight response was still inadequate. The truncated modes were added to the system with little degradation, verifying the acceptability of this truncation.

